Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

In-Cylinder Optical Measurement for Analyzing Control Factor of Ignition Phenomena under Diluted Condition

2020-09-15
2020-01-2048
To increase thermal efficiency of internal combustion engines, dilution combustion systems, such as lean burn and exhaust gas recirculation systems, have been developed. These systems require spark-ignition coils generating large discharge current and discharge energy to achieve stable ignition under diluted mixture conditions. Several studies have clarified that larger discharge current increases spark-channel stretch and decreases the possibility of spark channel blow-off and misfire. However, these investigations do not mention the effect of larger discharge current and energy on the initial combustion period. The purpose of this study was to investigate the relation among dilution ratio, initial-combustion period, and coil specifications to clarify the control factor of the dilution limit.
Technical Paper

Cold Start HC Reduction with Feedback Control Using a Crank Angle Sensor

2008-04-14
2008-01-1010
Emission regulations continue to be strengthened, and it is important to decrease cold start hydrocarbon concentrations in order to meet them, now and in the future. The HC concentration in engine exhaust gas can be reduced by optimizing the air-fuel ratio. However, a conventional air-fuel ratio feedback control does not operate for the first ten seconds after the engine has started because the air-fuel ratio sensor has not yet been activated. In this paper, we report on a study to optimize the air-fuel ratio using a crank angle sensor until the air-fuel ratio sensor has been activated. A difference in fuel properties was used as a typical disturbance factor. The control was applied to both a direct-injection engine (DI) and a port-injection engine (MPI). It was evaluated for two fuel types: one which evaporates easily and one which does not. The experimental results show the air-fuel ratio is optimized for both types of fuel.
Technical Paper

An Air-Fuel Ratio and Ignition Timing Retard Control Using a Crank Angle Sensor for Reducing Cold Start HC

2009-04-20
2009-01-0588
Emission regulations continue to be strengthened, and it is important to decrease cold start hydrocarbon concentrations in order to meet them, now and in the future. The HC concentration in engine exhaust gas is reduced by controlling the air-fuel ratio to the low HC range and retarding the ignition timing as much as possible until the engine stability reaches a certain deterioration level. Conventionally however, the target air-fuel ratio has been set at a richer range than the low HC range and the target ignition timing has been more advanced than the engine stability limit, in order to stabilize the engine for various disturbances. As a result, the HC concentration has not been minimized. To solve this problem, a new engine control has been developed. This control uses a crank angle sensor to simultaneously control the air-fuel ratio and the ignition timing so that the HC concentration can be minimized.
Technical Paper

A Model-Based Technique for Spark Timing Control in an SI Engine Using Polynomial Regression Analysis

2009-04-20
2009-01-0933
Model-based methodologies for the engine calibration process, employing engine cycle simulation and polynomial regression analysis, have been developed and the reliability of the proposed method was confirmed by validating the model predictions with dynamometer test data. From the results, it was clear that the predictions by the engine cycle simulation with a knock model, which considers the two-stage hydrocarbon ignition characteristics of gasoline, were in good agreement with the dynamometer test data if the model tuning parameters were strictly adjusted. Physical model tuning and validation were done, followed by the creation of a dataset for the regression analysis of charging efficiency, EGR mass, and MBT using a 4th order polynomial equation. The stepwise method was demonstrated to yield a logarithm likelihood ratio and its false probability at each term in the polynomial equation.
Technical Paper

Improvement of Thermal Efficiency Using Fuel Reforming in SI Engine

2010-04-12
2010-01-0584
Hydrogen produced from regenerative sources has the potential to be a sustainable substitute for fossil fuels. A hydrogen internal combustion engine has good combustion characteristics, such as higher flame propagation velocity, shorter quenching distance, and higher thermal conductivity compared with hydrocarbon fuel. However, storing hydrogen is problematic since the energy density is low. Hydrogen can be chemically stored as a hydrocarbon fuel. In particular, an organic hydride can easily generate hydrogen through use of a catalyst. Additionally, it has an advantage in hydrogen transportation due to its liquid form at room temperature and pressure. We examined the application of an organic hydride in a spark ignition (SI) engine. We used methylcyclohexane (MCH) as an organic hydride from which hydrogen and toluene (TOL) can be reformed. First, the theoretical thermal efficiency was examined when hydrogen and TOL were supplied to an SI engine.
Technical Paper

Development of Predictive Powertrain State Switching Control for Eco-Saving ACC

2017-03-28
2017-01-0024
In recent years, improvement of in-use fuel economy is required with tightening of exhaust emission regulation. We assume that one of the most effective solutions is ACC (Adaptive Cruise Control), which can control a powertrain accurately more than a driver. We have been developing a fuel saving ADAS (Advanced Driver Assistance System) application named “Sailing-ACC”. Sailing-ACC system uses sailing stop technology which stops engine fuel injection, and disengages a clutch coupling a transmission when a vehicle does not need acceleration torque. This system has a potential to greatly improve fuel efficiency. In this paper, we present a predictive powertrain state switching algorithm using external information (route information, preceding vehicle information). This algorithm calculates appropriate switching timing between a sailing stop mode and an acceleration mode to generate a “pulse-and-glide” pattern.
Technical Paper

Water Recycling System for CELSS Environment in Space

1990-07-01
901208
System configurations of water recycling for space use have been continued through theoretical and experimental studies. The water recycling system plays a central role in a Closed Ecological Life Support System (CELSS) which offers necessary environment and life styles in closed environment such as space stations, lunar bases, etc.. Membrane technology is a possible candidate for purifying waste water produced by crew use facility, plant cultivation facility, etc. In considerations of the system compactness realizing energy saving, membrane distillation has been revealed to be a suitable purification process. Ground experiments has been performed using membrane filtration processes and membrane distillation process. Thermopervaporation technology with hydrophobic membrane is utilized in the distillation process. The energy saving is achieved by thermal return of condensation energy.
Technical Paper

Mixture Formation During Cold Starting and Warm-up in Spark Ignition Engines

1996-02-01
960065
A thermodynamic analysis of mixture formation in cylinders that takes into account mixture inhomogeneity and the wall film is presented. Conditions for obtaining low hydrocarbon emission are clarified analytically as a function of the fuel mass of the wall film and inhomogeneity of the mixture. Optimum processes for atomizing and vaporizing fuel are presented to reduce the inhomogeneity and the fuel mass of the film.
Technical Paper

Stability Analysis of Engine Revolution by a Chassis and Powertrain Dynamics Simulator

1988-11-01
881778
This paper discusses causes and the mechanism of surging, back and forth chassis oscillation which occurs in cars with electronically controlled multi-point gasoline injection systems. This occurs during sharp acceleration, engine braking deceleration, and low speed coasting, at rather low ratio gear positions. We conclude that the mechanism of surging is parametric coupled oscillation. This conclusion is based on experimental data analysts and parameter sensitivity analysis using a chassis and engine dynamics simulator. The elements of parametric coupled oscillation are: a forcing system composed of engine control systems, engine and power transmission systems; a resonance system composed of axle and frame-body translation systems; a feedback system composed of axle translation systems and wheel revolution systems.
Technical Paper

Analysis of Knocking Suppression Effect of Cooled EGR in Turbo-Charged Gasoline Engine

2014-04-01
2014-01-1217
The cooled EGR system has been focused on as a method for knocking suppression in gasoline engines. In this paper, the effect of cooled EGR on knocking suppression that leads to lower fuel consumption is investigated in a turbo-charged gasoline engine. First, the cooled EGR effect is estimated by combustion simulation with a knock prediction model. It shows that the ignition timing at the knocking limit can be advanced by about 1 [deg. CA] per 1% of EGR ratio, combustion phasing (50% heat release timing) at the knocking limit can be advanced by about 0.5 [deg. CA] per 1% of EGR ratio, and the fuel consumption amount can be decreased by about 0.4% per 1% of EGR ratio. Second, the effect of cooled EGR is verified in an experimental approach. By adding inert gas (N2/CO2) as simulated EGR gas upstream of the intake pipe, the effect of EGR is investigated when EGR gas and fresh air are mixed homogeneously. As a result, the ignition timing at the knocking limit is advanced by 7 [deg.
X