Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Smooth Gear Shift Control System Using Estimated Torque

1994-03-01
941013
An automotive powertrain total control system using estimated output shaft torque has been investigated in order to enhance drivability and improve fuel economy. The system provides efficient control for both the engine and transmission which leads to an enhancement in drivability by reducing shocks during gear shifts. This paper describes a new smooth gear shift control method using the total control system. By use of the estimated output shaft torque, it is possible to detect accurately the fluctuation condition and the start time of the inertia phase, which are important factors affecting shock occurrence. Torque feedback, got from estimated torque, was applied to the control of engine output shaft torque during shifts. The optimum hydraulic pressure, also got from estimated torque, was applied to the clutch of the transmission during shifts.
Technical Paper

Engine Control System for Lean Combustion

1987-02-01
870291
The basic structure of a new engine control system for lean combustion is presented. A fuel atomizer is adopted to obtain a uniform mixture of fine fuel droplets, 40µm in diameter. A new air-fuel ratio sensor and an integrated control method for air flow are developed for precise and rapid response control of cylinder air-fuel ratios 8 to 26. Great improvements in both fuel consumption and exhaust emission characteristics are obtained by increasing the mean air-fuel ratio to 25 under cruising condition. There are made possible by the stable combustion provided by the fine mixture. This system provides the driver with quick vehicle response and good fuel economy, while ensuring smooth driveability.
Technical Paper

Development of Predictive Powertrain State Switching Control for Eco-Saving ACC

2017-03-28
2017-01-0024
In recent years, improvement of in-use fuel economy is required with tightening of exhaust emission regulation. We assume that one of the most effective solutions is ACC (Adaptive Cruise Control), which can control a powertrain accurately more than a driver. We have been developing a fuel saving ADAS (Advanced Driver Assistance System) application named “Sailing-ACC”. Sailing-ACC system uses sailing stop technology which stops engine fuel injection, and disengages a clutch coupling a transmission when a vehicle does not need acceleration torque. This system has a potential to greatly improve fuel efficiency. In this paper, we present a predictive powertrain state switching algorithm using external information (route information, preceding vehicle information). This algorithm calculates appropriate switching timing between a sailing stop mode and an acceleration mode to generate a “pulse-and-glide” pattern.
Technical Paper

A Study of Friction Characteristics of Continuously Variable Valve Event & Lift (VEL) System

2006-04-03
2006-01-0222
A continuously variable valve event and lift (VEL) system, actuated by oscillating cams, can provide optimum lift and event angles matching the engine operating conditions, thereby improving fuel economy, exhaust emission performance and power output. The VEL system allows small lift and event angles even in the engine operating region where the required intake air volume is small and the influence of valvetrain friction is substantial, such as during idling. Therefore, the system can reduce friction to lower levels than conventional valvetrains, which works to improve fuel economy. On the other hand, a distinct feature of oscillating cams is that their sliding velocity is zero at the time of peak lift, which differs from the behavior of conventional rotating cams. For that reason, it is assumed that the friction and lubrication characteristics of oscillating cams may differ from those of conventional cams.
Journal Article

Multi-Fidelity Total Integrated Simulation Technology for High Pressure Pump with Squeeze Film Effect

2017-03-28
2017-01-1325
Automotive fuel can be efficiently combusted by injecting it into the cylinders at high pressure to atomize it to pass the regulations for exhaust gas and fuel economy. For this reason, automotive companies have developed direct injection engines, which can inject gasoline into the cylinders directly. Furthermore, the demand for lower-noise high pressure pumps is also increasing from the viewpoint of automotive comfort. Since the valve velocity and noise level will increase as the pressure in fuel pumps increases, noise problems need to be solved under the high pressure conditions. Accordingly, the valve motion should be predicted with high accuracy under operating conditions to evaluate the noise caused by valve impingement. In addition, the squeeze film effect phenomenon will occur in the physical fuel pumps affect the prediction of the noise level caused by valve impingement.
Journal Article

A Study of a Multiple-link Continuously Variable Valve Event and Lift (VVEL) System

2008-06-23
2008-01-1719
A new variable valve event and lift (VVEL) system has been developed by applying a multiple-link mechanism. This VVEL system can continuously vary the valve event angle and lift over a wide range from an exceptional small event angle and small lift and to a large event angle and large lift. This capability offers the potential to improve fuel economy, power output, emissions and other parameters of engine performance. The valve lift characteristics obtained with the VVEL system consist of a synthesis of the oscillatory motion characteristics of the multiple-link mechanism and the oscillating cam profile. With the multiple-link mechanism, the angular velocity of the oscillating cams varies during valve lift, but the valve lift characteristics incorporate both gentle ramp sections and sharp lift sections, the same as a conventional engine.
Journal Article

Prediction of Vehicle Interior Noise from a Power Steering Pump using Component CAE and Measured Noise Transfer Functions of the Vehicle

2010-04-12
2010-01-0509
In response to the growing demand for fuel economy, we are developing a high-efficient variable displacement pump for hydraulic power steering systems. In order to develop a quiet variable displacement pump which generates lower noise for better vehicle interior sound quality, we have been developing a simulation tool which includes hydraulic analysis, vibration analysis, and vehicle interior noise analysis which combines simulation outputs and measured noise transfer functions of the targeted vehicle. This paper provides both validation results of the simulation tool and application examples to design improvement to conclude the effectiveness of the simulation tool developed.
X