Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Materials Solutions for Converting Cast Iron Applications to Powder Metal

2002-03-04
2002-01-0670
In the last several years, powder metallurgy (P/M) materials have been developed to rival the properties of cast iron and screw machined grades utilized in both automotive and non-automotive applications. These materials offer the P/M industry a momentous opportunity to dramatically increase its market by replacing some of the cast iron volume utilized today. While the inherent net shape capabilities of P/M and the potential cost savings of conversion to P/M offer customers distinct advantages, previous materials have not offered property combinations comparable to many cast iron grades. This work will explore the common grades of cast iron and propose P/M materials as possible replacements for each.
Technical Paper

42 Volt Architecture on Powder Metallurgy - Opportunities

2003-03-03
2003-01-0443
The 42-Volt electrical system is being introduced in automobiles to provide the extra power needed for various electromagnetic devices. These paper discuses the opportunity offered by the 42Volt for powder metal parts and the challenges. Major opportunities are in motors. A brief discussion of motors and the performance requirements for the magnetic core material used is included. Brushless motor design can benefit the most from insulated iron powder compacts because of the design simplicity of powder metal parts and three dimensional flux capability which is most beneficial in rotating devices.(P/M stands for powder metallurgy and not permanent magnets)
Technical Paper

Opportunities for Conversion of Powertrain Components from Malleable/Ductile Cast Irons to Powder Metallurgy

2000-03-06
2000-01-0997
Malleable and ductile cast irons are used extensively in gearing and high strength applications within automotive power train applications. Advantages of malleable and ductile cast irons are low material cost with mechanical properties that meet or exceed the requirements of the intended application(s). One disadvantage of the malleable cast iron is the extensive heat treating required to obtain the proper microstructure and mechanical properties. Both malleable and ductile iron components require extensive machining to produce the finished component. The combination of heat treating and extensive machining often results in a component that is costly to manufacture. Recent advances in the Powder Metallurgy (P/M) process including high strength material systems and high density processing have achieved mechanical properties that meet or exceed the level achieved with the current malleable and ductile cast iron materials.
Technical Paper

High Performance P/M Stainless Steels

1999-03-01
1999-01-0340
Powder Metallurgy (P/M) stainless steel automotive exhaust flanges are in volume production. However competing technologies continue to improve and may threaten the anticipated increase in applications of P/M stainless steel flanges. This paper examines improvements in powder propeties that should improve the processing and perfomance of P/M stainless steels.
X