Refine Your Search




Search Results


A Study of PGM-Free Oxidation Catalyst YMnO3 for Diesel Exhaust Aftertreatment

Manganese oxides show high catalytic activity for CO and HC oxidation without including platinum group metals (PGM). However, there are issues with both thermal stability and resistance to sulfur poisoning. We have studied perovskite-type YMnO3 (YMO) with the aim of simultaneously achieving both activity and durability. This paper describes the oxidation activity of PGM-free Ag/i-YMO, which is silver supported on improved-YMO (i-YMO). The Ag/i-YMO was obtained by the following two methods. First, Mn4+ ratio and specific surface area of YMO were increased by optimizing composition and preparation method. Second, the optimum amount of silver was supported on i-YMO. In model gas tests and engine bench tests, the Ag/i-YMO catalyst showed the same level of activity as that of the conventional Pt/?-Al2O3 (Pt = 3.0 g/L). In addition, there was no degradation with respect to either heat treatment (700°C, 90 h, air) or sulfur treatment (600°C to 200°C, total 60 h, 30 ppm SO2).

Introduction of New Concept U*sum for Evaluation of Weight-Efficient Structure

A new index for evaluating load path dispersion is proposed, using a structural load path analysis method based on the concept of U* , which expresses the connection strength between a load point and an arbitrary point within the structure enables the evaluation of the load path dispersion within the structure by statistical means such as histograms and standard deviations. Presenter Tadashi Naito, Honda R&D Co., Ltd.
Technical Paper

How to Predict Powertrain Vibration at the Engine Mounting Points Under Running Conditions

Recently, the eigenvalue analysis and the frequency response analysis using the finite element method (FEM) is commonly used, since the vibration characteristic of the powertrain is an important specification which causes the influence on the booming noise and the durability of each parts. However, the eigenvalue analysis and the frequency response analysis cannot take into account of the dynamic behavior of the cranktrain and thenonlinear characteristics. This paper presents a new approach which considers the dynamic behavior of the crankshaft and thenonlinear oil film characteristics of the main bearings and the engine mounts for accurately predicting the vibration level at the engine mounting points under running conditions. By applying this approach to an in-line four cylinder engine, the predicted vibration level is reasonably comparable with experimental result.
Technical Paper

Development Procedure for Interior Noise Performance by Virtual Vehicle Refinement, Combining Experimental and Numerical Component Models

This paper summarizes the development of a predictive vibro-acoustic full vehicle model of a mid-size sedan and focuses on the engineering analysis procedures used to evaluate the design performance related to engine induced noise and vibration. The vehicle model is build up from a mixture of test-based and finite element component models. FRF Based Substructuring is used for their assembly. The virtual car model is loaded by engine forces resulting from indirect force identification. This force-set includes combustion, inertia, piston slap and crank bearing forces, for engine harmonics from 0.5 to 10th order. Such forced response analysis yields vibration levels at every component, at every interface between components, and interior noise predictions. The target is to provide the vehicle NVH manager with the insight required to identify major causes for peak noise levels and to set targets and develop an action plan for every component design team.
Technical Paper

Characteristics of Vaporizing Continuous Multi-Component Fuel Sprays in a Port Fuel Injection Gasoline Engine

Vaporization models for continuous multi-component liquid sprays and liquid wall films are presented using a continuous thermodynamics formulation. The models were implemented in the KIVA3V-Release 2.0 code. The models are first applied to clarify the characteristics of vaporizing continuous multi-component liquid wall films and liquid drops, and then applied to numerically analyze a practical continuous multi-component fuel - gasoline behavior in a 4-valve port fuel injection (PFI) gasoline engine under warm conditions. Corresponding computations with single-component fuels are also performed and presented for comparison purposes. As compared to the results of its single-component counterpart, the vaporizing continuous multi-component fuel drop displays a larger vaporization rate initially and a smaller vaporization rate as it becomes more and more dominated by heavy species.
Technical Paper

Computer simulation process for pedestrian protection structures

Research into pedestrian protection has been carried out since the 1960s, in recent years there have been proposals in Europe to legislate requirements in this area and therefore the research is becoming more focused. In the draft regulation, impactor tests have been proposed as a method for evaluating the impact caused by vehicles'' body for pedestrians. This paper introduces impactor model and actual vehicle analysis as a means for simulating impactor testing. Three types of impactors for vehicle tests are presented. It is necessary that the models are first matched with the results of the calibration tests, then matched with the results of the tests on actual vehicles.
Technical Paper

Oxidation Stability of Automatic Transmission Fluids -A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

The International Lubricant Standardization and Approval Committee (ILSAC) ATF subcommittee members have compared the two oxidation bench test methods, Aluminum Beaker Oxidation Test (ABOT) and Indiana Stirring Oxidation Stability Test (ISOT), using a number of factory-fill and service-fill ATFs obtained in Japan and in the US. In many cases, the ATFs were more severely oxidized after the ABOT procedure than after the same duration of the ISOT procedure. The relative severity of these two tests was influenced by the composition of the ATFs. The bench test oxidation data were compared with the transmission and the vehicle oxidation test data.
Technical Paper

Development and Validation of the Finite Element Model for the Human Lower Limb of Pedestrians

An impact test procedure with a legform addressing lower limb injuries in car-pedestrian accidents has been proposed by EEVC/WG17. Although a high frequency of lower limb fractures is observed in recent accident data, this test procedure assesses knee injuries with a focus on trauma to the ligamentous structures. The goal of this study is to establish a methodology to understand injury mechanisms of both ligamentous damages and bone fractures in car-pedestrian accidents. A finite element (FE) model of the human lower limb was developed using PAM-CRASH™. The commercially available H-Dummy™ lower limb model developed by Nihon ESI for a seated position was modified to represent the standing posture of pedestrians. Mechanical properties for both bony structures and knee ligaments were determined from our extensive literature survey, and were carefully implemented in the model considering their strain rate dependency in order to simulate the dynamic response of the lower limb accurately.
Technical Paper

Combination of Antilock Brake System (ABS) and Combined Brake System (CBS) for Motorcycles

Basic requirements for a motorcycle brake system include achieving adequate deceleration and improving motorcycle stability during braking by easy operation. To help realize these requirements, Combined Brake System (CBS) and Antilock Brake System (ABS) for motorcycle have been researched and developed. A new brake system which combines CBS with ABS has been recently researched and installed on a test motorcycle. The results of braking tests showed high performance in deceleration and good braking feeling especially during ABS actuation.
Technical Paper

Trend of Bolts for Use in Automobiles and Development of Class 10.9 Low Carbon Boron Steel Bolt

There are strong demands for reduced production costs of ordinary bolts, of which a large number are used throughout automobiles. In addition, there are continued demands for higher performance and lower weight in automobiles. For this reason, there is an increasing trend to develop steel for high strength bolts or to adopt the plastic region tightening method. At present, the principal materials used in high strength bolts of class 10.9 are medium carbon alloy steel. When a low carbon boron steel bolt is used as a class 10.9 bolt under high stress, delayed fracture may occur, so that these cannot always be used for the body and chassis applications. The authors have developed a new low carbon boron steel with increased delayed fracture strength on the same order as that of JIS-SCM435 (equivalent to SAE4135) medium carbon alloy steel. Attention was focused principally on decreasing the amounts of phosphorus and sulfur in the steel.
Technical Paper

A Study of Forces Acting on Rings for Metal Pushing V-Belt Type CVT

Four forces act in rings for a metal pushing V-belt. These forces are: two kinds of intercepting forces which prevent blocks from going outside of pulleys (one caused by pulley thrust, the other caused by centrifugal force), frictional force acting between the rings and the blocks, and bending force in longitudinal direction. In the previous paper (1)(2)(3)(5), distribution of three forces, excluding centrifugal force, were presented at low belt speed. We successfully measured all four kinds of forces including centrifugal force continuously at practical operation conditions for layered rings. In this paper, distribution of these four forces on the innermost ring is described at steady states.
Technical Paper

Corrosion Resistance of Gas Shielded Metal Arc Welds with E-coat

Gas shielded metal arc welding is generally applied to automobile chassis parts. However, the weld parts with the E-coat show poor corrosion resistance. Therefore, the corrosion mechanism of the weld parts was investigated. The results found two reasons why the weld parts corroded faster than the non weld parts:(1)inadequate phosphating (2)defects in the E-coat. After detailed investigation, it was clarified that the major cause of poor corrosion resistance was the defects in the E-coat caused by slags formed on the surface of the weld bead. Therefore the amount of slag has to be decreased to improve the corrosion resistance. The effect of shielding gas composition on the amount of slag was then investigated. In the case of Ar and oxidizing gas mixture, the corrosion resistance improved as the oxidizing gas content decreased. This was due to the reduction of slags.
Technical Paper

Analysis of Stress Distribution of Timing Belts by FEM

A model of a timing belt analyzed by FEM (a general non-linear finite element program:ABAQUS) successfully confirmed the mechanism that generates belt cord stress. Analysis revealed a good correlation between the experimental and computed results of stress distribution of the belt cord. Through calculation, it was discovered that belts broke near the tooth root, which is the point of maximum stress of the cord.
Technical Paper

Honda 3.0 Liter, New V6 Engine

For a 1997 model year passenger car, Honda has released an all-new 3.0 liter, transversely mounted, SOHC VTEC (Variable Valve Timing and Lift Electronic Control) V6 engine. This compact, light-weight, state-of-the-art V6 engine achieves 147 kW @ 5500 rpm, improves fuel economy, and uses regular unleaded fuel. This is the world's first SOHC VTEC V6 engine, and the first V6 to be manufactured in the United States by Honda.
Technical Paper

The Effects on Motorcycle Behavior of the Moment of Inertia of the Crankshaft

The moment of inertia of the crankshaft cannot be ignored when analyzing the dynamics of a motorcycle. In this research, the tire friction force (calculated by drag and tire side force) was used as an index of the drive performance. The ratio of roll rate and steering torque (here after referred to as a roll rate gain) was used as an index of the cornering performance, and it was analyzed as the influence of the moment of inertia of a crankshaft on the drive performance as well as cornering performance. As a result, the influence on drive performance and cornering performance by the moment of inertia has been found.
Technical Paper

Research on Low-Friction Properties of High Viscosity Index Petroleum Base Stock and Development of Upgraded Engine Oil

High viscosity index(HVI) petroleum base stock, with excellent temperature-viscosity characteristics, oxidation resistance, and low-evaporation properties, offers advantages as the base stock for high fuel economy engine oils, particularly because of its low-friction properties in the boundary and/or “E.H.L (Elastohydrodynamic Lubrication)” area due to its rheological characteristics. This research evaluated HVI base stock's low-friction properties. Upgrading the oil from 5W-30 to 5W-20 was also investigated. The friction properties of the HVI base stock were measured by a unit friction platform. The results show a 28% reduction in friction coefficient compared with the conventional, solvent refined oil, which is attributable to the high-pressure viscosity of the base oil.
Technical Paper

Improving the Exhaust Emissions of Two-Stroke Engines by Applying the Activated Radical Combustion

The improvement of the exhaust emission and fuel consumption in the conventional two-stroke engines would be urgent. Our previous papers have suggested that the timing controlled auto-ignition, namely Activated Radical Combustion(AR combustion) could be a solution for that. In this time, the AR combustion was applied to a 250 cm3 motorcycle for the intention of commercialization of the AR engine. The alternating phases between AR combustion and SI combustion were analyzed and successfully improved the typical pinking noise. The AR combustion finally decreased the HC emission by approximately 60% in the EC 40 emission evaluation mode. As the power units for the small motorcycles or outboards, two-stroke engines are yet majority. That is because they have advantages such as higher power output, simpleness and compactness of the structure, at the same time, their drawbacks in fuel consumption and exhaust emissions are also pointed out in the issues of preserving the environment.
Technical Paper

Development of the Ultra Low Heat Capacity and Highly Insulating (ULOC) Exhaust Manifold for ULEV

With the total amount of air pollution caused by vehicle emissions on the increase, the problem has now became a global concern, and various regulatory measures have been put into effect in each region of the world. This is especially true in California, U.S.A, where countermeasures have been adopted early. There, the ULEV (Ultra Low Emission Vehicle) standard, which was ones deemed impossible for gasoline engines to meet, is now in effect. In response to these developments, Honda announced the ULEV system for a 2.2 liter gasoline engine with a closed-coupled catalytic converter (CC) and an under-floor catalytic converter (UF) at the beginning of 1995, and reported on the system's emission characteristics. 1) A new ULEV system has been developed based on the previous system but using only UF, aiming for marketable improvements in product characteristics such as higher output. The new system features the ultra low heat capacity and high heat insulating (ULOC) exhaust manifold.
Technical Paper

Comparison of Three Active Chassis Control Methods for Stabilizing Yaw Moments

Using stabilizing yaw-moment diagrams, the authors analyzed three methods of active chassis control for their effect and effective ranges during cornering maneuvers. The following results were obtained: controlling the transverse distribution of driving and braking forces cancels the changes in a vehicle's dynamic characteristics caused by acceleration and deceleration. Controlling the distribution of roll stiffness is only effective in ranges with high lateral acceleration, and the effect varies depending on the longitudinal weight distribution. Controlling the rear wheel steering angle is most effective in a range with a small side slip angle, but this effect decreases with an increase in the angle, especially during deceleration.