Refine Your Search



Search Results

Technical Paper

Trend of Bolts for Use in Automobiles and Development of Class 10.9 Low Carbon Boron Steel Bolt

There are strong demands for reduced production costs of ordinary bolts, of which a large number are used throughout automobiles. In addition, there are continued demands for higher performance and lower weight in automobiles. For this reason, there is an increasing trend to develop steel for high strength bolts or to adopt the plastic region tightening method. At present, the principal materials used in high strength bolts of class 10.9 are medium carbon alloy steel. When a low carbon boron steel bolt is used as a class 10.9 bolt under high stress, delayed fracture may occur, so that these cannot always be used for the body and chassis applications. The authors have developed a new low carbon boron steel with increased delayed fracture strength on the same order as that of JIS-SCM435 (equivalent to SAE4135) medium carbon alloy steel. Attention was focused principally on decreasing the amounts of phosphorus and sulfur in the steel.
Technical Paper

Corrosion Resistance of Gas Shielded Metal Arc Welds with E-coat

Gas shielded metal arc welding is generally applied to automobile chassis parts. However, the weld parts with the E-coat show poor corrosion resistance. Therefore, the corrosion mechanism of the weld parts was investigated. The results found two reasons why the weld parts corroded faster than the non weld parts:(1)inadequate phosphating (2)defects in the E-coat. After detailed investigation, it was clarified that the major cause of poor corrosion resistance was the defects in the E-coat caused by slags formed on the surface of the weld bead. Therefore the amount of slag has to be decreased to improve the corrosion resistance. The effect of shielding gas composition on the amount of slag was then investigated. In the case of Ar and oxidizing gas mixture, the corrosion resistance improved as the oxidizing gas content decreased. This was due to the reduction of slags.
Technical Paper

Application of Aluminum for Automobile Chassis Parts

Several processes, such as casting, forging, and pressing, were used in the manufacturing of the Honda NSX's aluminum chassis. For casting, a high grade method which utilizes program control of mold temperature was developed and put into practical use. For optimum forging, a selection of cold and hot processes were investigated and a process to save energy during processing was pursued. As a result, an overall weight reduction of approximately 50% was achieved.
Technical Paper

Development of Elliptical Piston Engine for Motorcycle

Honda developed a 750cm3 V-4 engine adopting an elliptical piston, and began selling the “NR” motorcycle with the engine installed in 1992. The adoption of an elliptical piston and cylinder achieved a compact layout of eight valves, which consists of four intake valves and four exhaust valves per cylinder. This paper explains the features of an engine with such a layout, focusing on the following: 1) Multiple valves and short-stroke enable the 750cm3 engine to achieve 15,000rpm. 2) The engine is more compact and lightweight than an engine having the same displacement, and more powerful than one with twice as many cylinders (8 cylinders). Also, this paper describes the techniques giving improved blowby gas and oil consumption characteristics as related to the sealing property of the piston, cylinder and piston ring and achieving performance equivalent to a conventional motorcycle engine.
Technical Paper

A Study of Vehicle Equipped with Non-Throttling S.I. Engine with Early Intake Valve Closing Mechanism

To enable non-throttling operation of gasoline S.I. engine, we have manufactured engines equipped with a newly developed Hydraulic Variable-valve Train (HVT), which can vary its intake-valve closing-timing freely. The air-intake control ability of HVT engine is equivalent to conventional throttling engines. Combustion becomes unstable, however, under non-throttling operation at idling. For the countermeasure, newly designed combustion chamber has been developed. The reduction of pumping loss by the HVT depends on engine speed rather than load, and amounts to about 80 % maximum. A conventional engine-management system is not applicable for non-throttling operation. Therefore, new management system has been developed for load control.
Technical Paper

A New Variable Valve Engine Applying Shuttle Cam Mechanism

Variable-valve-actuation mechanism is considered to be one of the most suitable solutions to realize the compatibility between higher power output and performances in the practical speed range. A new variable-valve-actuation mechanism named “Shuttle Cam” was designed and studied. In this mechanism which was applied to a conventional motorcycle engine with rocker arms and gear-train-driven valve system, the cam gears move along the idler gear. And cam shafts simultaneously slide along the rocker-arm slipper surfaces which are concentric with the idler gear. Consequently valve lift varies continuously in accordance with the alteration in the rocker-arm lever ratio and the cam phasing changes simultaneously in accordance with the cam gear rotation. Result of the experiments has confirmed that the mechanism functions accurately even at high speeds up to 10,000 rpm and some improvements were achieved in power output, fuel consumption, idling quality, and exhaust-noise level.
Technical Paper

Experimental Analysis of Connecting Rod Bearing Seizures in Four-Cycle Gasoline Engines

In this work, the connecting rod bearing seizures as one of the problems latent to the high-output, high-speed engines are investigated. Studies are conducted on the evaluation of anti-seizure properties of a single connecting rod bearing installed in the test rig as well as in commercial engines. As the results of the former study, the bearing wear is affected by the rod surface roughness (Rmax ) and the oil temperature (viscosity). Further, frequent metal to metal contacts of bearings are observed by the electrical measuring apparatus under higher temperature, and full load conditions. While in the latter, it is found the total heat generated of the bearing is the important factor affective to the bearing seizures, and can be analyzed by using PV value, rod surface roughness and oil viscosity.
Technical Paper

High Efficiency 6-speed Automatic Transmission

A new 6-speed automatic transmission (AT) has been developed with the aim of enhancing fuel economy, raising efficiency, and achieving greater compactness. The unit was built on a parallel-shaft structure similar to the previous Honda AT, which has high torque transmission efficiency. The new AT was given more gear speeds and the ability to handle higher input torque from the engine. On the one hand, bolt structure for shaft tightening was implemented, the forward-reverse shift mechanism was placed on the input shaft and common gear trains are provided. As a result of these and other measures, the total length of the new transmission is 18 mm shorter than the previous model 5-speed AT. A multi-plate lock-up clutch (LC) structure with a separate chamber in the torque converter was also adopted so that the lock-up torque capacity could be increased and the LC control range expanded.
Technical Paper

Development of Prediction Method of Static Torque Sharing Distribution of Planetary Gear Sets Generated by Manufacturing Error Distribution

This paper discusses a method of predicting the torque distribution on planet gears originating in manufacturing errors, which is necessary for appropriate strength design of the gears in planetary gear sets. First, an expression of relation between manufacturing errors and the torque on the planet gears in a normal n-planet planetary gear set was derived. As a result, an equation expressing the distribution of torque to the planet gears was obtained. Tests were conducted to verify the validity of the equation in the case of a 4-planet planetary gear set. In order to predict the distribution of torque, it was necessary to estimate the stiffness of the planetary gear set that was the subject of the relational expression. These stiffness values were calculated by numerical analysis using a 3D FEM, into which blueprint values and material property values were input.
Technical Paper

Research on Measurement and Simulation Technology of Valve Behavior during Engine Firing

A measurement method for valve behavior during engine firing is established. In order to grasp valve behavior accurately, it has been required to develop a measurement method for valve behavior that takes in account for the condition during engine firing. However, behaviors of a valve train have generally been analyzed during engine motoring because it is difficult to measure them during engine firing. In this study, valve behavior during engine firing can be measured accurately by attaching a gap sensor to the valve guide. Furthermore, the simulation system for valve behavior that treated the valve train as three-dimensional flexible body is built. Under engine motoring condition, high correlation between measurement and simulation is confirmed for valve behavior and spring stress.
Technical Paper

Development of Compact Fuel Pump Module for Motorcycles

A compact, low-cost fuel pump module has been developed for use in motorcycles with a small-displacement engine. Various considerations are given to make the module as compact as possible. The pump motor, which is one of the major component parts, is down-sized specifically for applications to small-displacement engines. The pressure regulator uses a simple construction consisting only of a ball and a spring without a diaphragm. Especially noteworthy is that with the volume reduced by approximately 40% from the conventional pressure regulator while using the construction that reduces self-excited vibrations caused by fuel pressure pulsations, the pressure regulator contributes significantly to the down-sizing and cost reduction of the module. Furthermore, the down-sized module remarkably reduces the size of fuel pump mount surface, allowing a modification from the flat-surface sealing to the radial sealing.
Technical Paper

Optimization of Semi-Floating Piston Pin Boss Formed by Using Oil-Film Simulations

This paper describes the oil-film bearing analysis simulation was utilized for the optimization of pin boss form which reduces a piston-pin noise. It is clear from the mechanism analysis of the piston-pin noise which is the last research that an oil-film flow inside a pin boss is an important factor for pin noise reduction. So, in this research, the oil-film simulation of the piston-pin-boss bearing part was performed using oil-film bearing analysis tool. After setting up the simulation conditions of the oil-film bearing part so that actual pin behavior and high correlativity might be shown, a parameter, effective hydrodynamic angular velocity, and an oil flow rate of change suitable for evaluation of a pin noise were found out. The pin noise in semi floating piston was reduced to the same level as full floating type by applying pin boss form to which each evaluation parameter becomes the optimal to a piston.
Technical Paper

Development of Electric Motor for Electric Motorcycle for Business Use

A new DC brushless motor, which has an almost equivalent driving performance to a 50 cm₃ scooter engine, has been developed to be used in a new electric motorcycle for business. The traction motor is compact enough to be mounted close to the driveshaft of the transmission, which helps reduce friction in the drive train. Consequently, in the downsized motor, by mounting the drive train unit with the PDU (Power Drive Unit) on the wheel side by applying reduction gears, it enables the reduction of maximum motor torque requirement. It also enables other parts of the drive system to be integrated into one unit. In this motor, IPM (Interior Permanent Magnet) structure has been implemented to cope with the high rotation of the motor, and the concentrated winding stator coil has been implemented for downsizing. As for the rotor, the magnets were placed in sections and the yoke shapes were improved to achieve higher rotation speeds that provide the higher power.
Technical Paper

Prediction Method of Surface Pressure against Gasket in Consideration of Creep on Cylinder Head in Air-Cooled Engines

A method was designed to predict the gasket surface pressure in consideration of creep which occurs on the surface of the gasket side of the cylinder head in air-cooled engines. Creep caused by heat can cause major deformation on the gasket side of the cylinder head in air-cooled engines, which may result in combustion gas leaking from between the cylinder and cylinder head. Until now, there have been no reports of methods to accurately predict phenomena relating to this deformation in the initial stage of engine design. This study combined values of strain and temperature occurring on the gasket side of the cylinder head, obtained through FEM analysis of steady heat transfer and thermal stress, with unit test results showing the domains in which the influence of the creep is critical or not. This information was used to design a method to determine whether or not an engine's specifications fell into a domain in which creep would have an effect, and predict surface pressure.
Technical Paper

Potential Improvements to Impact Responses of the Flexible Legform Impactor

The validity of evaluating FlexPLI peak injury measures has been shown by the correlation of the peak measures between a human FE model and a FlexPLI FE model. However, comparisons of tibia bending moment time histories (BMTHs) between these models show that the FlexPLI model exhibits a higher degree of oscillatory behavior than the human model. The goal of this study was to identify potential improvements to the FlexPLI such that the legform provides more biofidelic tibia BMTHs at the normal standing height. Impact simulations using a human FE model and a FlexPLI FE model were conducted against simplified vehicle models to compare tibia BMTHs. The same series of impact simulations were conducted using the FlexPLI models that incorporated potential measures to identify measures effective for further enhancement of the biofidelity. An additional analysis was also conducted to investigate the key factor for minimizing the oscillation of the tibia BMTH.
Technical Paper

CFD Analysis of Lubricant Fluid Flow in Automotive Transmission

An analytic technology able to rapidly and accurately predict oil flows and churning torque in a transmission has been developed. The new method uses the finite difference method for analysis; with regard to wall boundaries it reproduces the shapes of physical objects by imparting boundary information to cells. This has made it a simple matter to treat the rotation and meshing of the gears, which form oil flows, and has also reduced the calculation cost. Tests of single-phase and multi-phase flows and churning torque were conducted in order to verify the accuracy of the new method. Calculation results for the flow velocity fields produced by rotating bodies, the trajectory of oil, and the behavior of the surface of the fluid displayed a good correlation with test results. Considering air entrainment in the oil, the ability of the method to reproduce these phenomena at high speeds of rotation was also increased.
Technical Paper

Development of a Target Sensitivity Function based A/F F/B Controller by Sensor Response Characteristics

Recently, automotive emission regulations are being further tightened, such as the Tier III/LEV III in the U.S. As a result, reducing cost of after-treatment systems to meet these strict regulations has become an urgent issue, and then the demand for high-precision air-fuel ratio (A/F) control which can achieve this cost reduction is high [1]. On the other hand, in order to meet rapidly changing market needs, it is becoming difficult to keep enough development periods that enable sufficient calibration by trial-and-error, such as feedback-gain calibration. This leads to an increase in three-way catalytic converter costs in some cases. For these reasons, it is necessary to construct control system that can make full use of hardware capabilities, can shorten development periods regardless of the skill level of engineers.
Technical Paper

Transmission-Mounted Power Control Unit with High Power Density for Two-Motor Hybrid System

A second-generation power control unit (PCU) for a two-motor hybrid system is proposed. An optimally designed power module, which is a key component of the PCU, is applied to increase heat-resistant temperature, while the basic structure of the first generation is retained and the power semiconductor chip is directly cooled from the single side. In addition to the optimum design, by decreasing the power loss as well as increasing the heat-resistant temperature of the power semiconductors (IGBT: Insulated Gate Bipolar Transistor and FWD: Free Wheeling Diode), the proposed PCU has attained 25% higher power density and 23% smaller size compared to first-generation units, maintaining PCU efficiency (fuel economy). To achieve a high yield rate in the power module assembly process, a new screening technology is adopted at the initial stage of power module manufacturing.
Technical Paper

The Structure of an Advanced Independent Rear Toe-Control System

Honda announced an independent right and left rear toe control system (first generation) in 2013 and presented it as the world's first. As stated in a previous paper, “Independent Left and Right Rear Toe Control System,” with this system Honda has achieved a balance between an enjoyable driving experience in which handling is performed at the driver's will (“INOMAMA” handling) and stable driving performance.(1) This first generation is optimally designed to the vehicle specifications such as suspension axial force and steering gear ratio of the vehicle to which the system is applied. For more widespread application of independent rear toe control technology, a next generation system (second generation) has been developed, which achieves both cost reduction and flexible system performance which can be adapted to a variety of vehicles. The system development began by setting the required target performance with consideration for adaptation to various car models.
Technical Paper

Design Method of Motorcycle Exhaust Sound Fitting to Vehicle Concept Regardless of Engine Configurations

Recently, it has been widely practiced in motorcycle developments that the same type of engine is commonly applied to various vehicle categories. Accordingly, it is drawing more attention to develop the methodology for creating the best suitable sound for each individual vehicle category regardless of restriction from the engine configurations. In our study, we aimed to establish a procedure to control exhaust sounds beyond the borders across the inherent sound qualities originated from their engine configurations. Firstly, we conducted subjective tests in order to extract essential factors, depicted by adjectives that appear in verbal expressions commonly used to illustrate sound qualities in general. The results enabled us to conduct quantitative evaluations of the exhaust sound qualities of various motorcycles. Next, we clarified the relationships among the individual factors of sound qualities under our study and physical parameters in waveforms of the sounds.