Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Development of Programmed-Fuel Injection for Two-Stroke Cycle Racer Engine

1991-11-01
911224
An electronically controlled fuel injection system for controlling the air/fuel (A/F) ratio has been looked forward as a means for improving drivability, output characteristics, and fuel consumption of two-stroke cycle motorcycle racer engines. However, actual installation of such a system on a high output two-stroke cycle engine (which utilizes exhaust gas pressure pulsation effects) has been considered difficult for the following reasons. Fluctuation in the delivery ratio (L) during firing and misfiring becomes great due to effects from the exhaust pipe. Applying the control method used for conventional four-stroke cycle engines (by which the delivery ratio (L) is measured) would necessitate a large and heavy system. The authors have eliminated such problems by developing an electronically controlled fuel injection system, the PGM-FI (Programmed-Fuel Injection) system, which employs basic intake air flow data according to engine speed (NE) and throttle opening (θTH).
Technical Paper

Improving Fuel Economy in Motorcycles Using One-Way Clutch

1989-11-01
891352
The one-way clutch mechanism seen on bicycles, etc. greatly ease the load of riders at times of coasting or descending downhill. Their use on motor vehicles are restricted to some automatic drive four-wheeled vehicles with torque converters. There are neither any example of mass-produced motorcycle with one-way clutch between the engine and the drive system nor any reports of quantitative study on its impact on the performance of the vehicle including fuel economy. The present paper reports the results of experimental research on one-way clutch employed in the drive system, obtained for motorcycles having five kinds of two-cycle engines of different displacements. The test on fuel economy showed an improvement of 4 - 9%.
Technical Paper

Improvement of Fuel Economy in a Four Stroke Spark Ignition Engine for a Small Motorcycle

1985-11-11
852238
For the purpose of reducing the fuel consumption of a motorcycle with a small-displacement, four-stroke spark-ignition engine, a compact combustion chamber was tried and the weight of the moving parts of the engine was reduced. As a result, the gas mileage under 30 km/h cruising condition was increased to 110 km/l with an improvement of 50% over a conventional motorcycle.
Technical Paper

Management System for Continuously Variable Valve Lift Gasoline Engine

2007-04-16
2007-01-1200
A continuously variable valve lift gasoline engine can improve fuel consumption by reducing pumping loss and increase maximum torque by optimizing valve lift and cam phase according to engine speed. In this research, a new control system to simultaneously ensure good driveability and low emissions was developed for this low fuel consumption, high power engine. New suction air management through a master-slave control made it possible to achieve low fuel consumption and good driveability. To regulate the idle speed, a new controller featuring a two-degree-of-freedom sliding-mode algorithm with cooperative control was designed. This controller can improve the stability of idle speed and achieve the idle operation with a lower engine speed. To reduce emissions during cold start condition, an ignition timing control was developed that combine I-P control with a sliding mode control algorithm.
Technical Paper

Effects of Fuel Volatility on Combustion Characteristics of PCCI Diesel Engine

2007-07-23
2007-01-1862
In PCCI diesel engine, the fuel is injected much earlier than the injection timing of conventional diesel engines. Exhaust-emission improvements are attained by the lean-premixed combustion. It is expected that fuel properties influence mixture formation and combustion characteristics. In this research, experiments were carried out using a single-cylinder PCCI diesel engine operating on pure fuels with different volatilities. The injection timing and overall equivalence ratio of the premixed spray were varied. The results showed that the maximum heat release rate was smaller for lower-volatility fuel while ISFC was maintained smaller. So the combustion of a lower-volatility fuel would moderately make progress.
Technical Paper

Waza (Skilled Craftsmanship) that Created RA272 Exhaust Pipe used in Formula 1 Race in 1960's

2008-04-14
2008-01-0547
This study attempted to faithfully reproduce and scientifically analyze the process of formation of the exhaust pipe of the winning RA272 engine used in Formula One in the 1960's, using the waza (skills) employed in its fashioning, which have been handed down by its makers. This analysis showed that the manual bending method, used to create the RA272 exhaust pipe, which was filled with sand and bent while being flame-heated, without the use of figures or molds, was superior to the mechanical bending method of that time, from the standpoint of short-term period of production. We have determined that the pipe displays that the microstructure of the material remains stable, even at exhaust temperatures of 700°C to 900°C, and that useful information on the pipe's shape stability and mechanical strength has been provided.
Technical Paper

A Study of High Power Output Diesel Engine with Low Peak Cylinder Pressure

2010-04-12
2010-01-1107
This study examined a high-speed, high-powered diesel engine featuring a pent-roof combustion chamber and straight ports, with the objective of improving the specific power of the engine while minimizing any increase in the maximum cylinder pressure (Pmax). The market and contemporary society expect improvements in the driving performance of diesel-powered automobiles, and increased specific power so that engine displacement can be reduced, which will lessen CO2 emissions. When specific power is increased through conventional methods accompanied with a considerable increase in Pmax, the engine weight is increased and friction worsens. Therefore, the authors examined new technologies that would allow to minimize any increase in Pmax by raising the rated speed from the 4000 rpm of the baseline engine to 5000 rpm, while maintaining the BMEP of the baseline engine.
Technical Paper

Study of Effect of CVT Pulleys on Strength and Transmission Efficiency of Metal Pushing V-belts

2011-04-12
2011-01-1426
In designing CVT pulleys, the effect of the fit clearance of the movable pulleys and their stiffness on the transmission efficiency and strength of the metal pushing V-belt is not necessarily clear. The research discussed in this paper introduced a pulley model that defined the pulleys as elastic bodies to a previously developed technology for the prediction of the transmission efficiency of the belts. As a result, it was found that when the fit clearance is reduced, the transmission efficiency of the belt is increased, and the amplitude of stress on the innermost rings and the element neck section is reduced. In addition, it was found that if pulley stiffness was reduced transmission efficiency was also reduced, and the amplitude of stress on the element neck section increased. This indicated that the fit clearance and the pulley stiffness changed the degree of deflection of the pulleys in the axial direction.
Technical Paper

Prediction of CVT Transmission Efficiency by Metal V-Belt and Pulley Behavior with Feedback Control

2010-04-12
2010-01-0855
A simulation technology has been developed to predict the transmission efficiency of a metal pushing V-belt and pulleys that make up the drive system of a continuously variable transmission (CVT). When a CVT operates in an actual vehicle, pulley thrust pressure is adjusted by feedback control to maintain a speed ratio. This feedback control has been implemented, for the first time, in an existing simulation that predicts the dynamic behavior of a metal V-belt using explicit structural analysis. The new simulation enables stable control of a target speed ratio when appropriate gains are set for each analysis condition.
Journal Article

Prediction of Fatigue Strength of Motorcycle Exhaust System Considering Vibrating and Thermal Stresses

2015-11-17
2015-32-0739
A method applicable in the design stage to predict fatigue strength of a motorcycle exhaust system was developed. In this prediction method, a vibrating stress, thermal stresses, stresses resulting from the assembling of the exhaust system components and a deterioration of fatigue strength of materials originated from high temperature were simultaneously taken into account. For the prediction of the vibrating stress, flexible multibody dynamics was applied to get modeling accuracy for vibration characteristics of the entire motorcycle and the exciting force delivered from engine vibrations. The thermal conduction analysis and the thermal deformation analysis based on finite element method (FEM) were applied for the prediction of thermal stresses in the exhaust system components. The temperature distribution on the surfaces of the exhaust system components is required for calculations of the thermal stresses.
Journal Article

Improving Fuel Efficiency of Motorcycle Oils

2013-10-15
2013-32-9063
As the motorcycle market grows, the fuel efficiency of motorcycle oils is becoming an important issue due to concerns over the conservation of natural resources and the protection of the environment. Fuel efficient engine oils have been developed for passenger cars by moving to lower viscosity grades and formulating the additive package to reduce friction. Motorcycle oils, however, which operate in much higher temperature regimes, must also lubricate the transmission and the clutch, and provide gear protection. This makes their requirements fundamentally very different from passenger car oils. Developing fuel efficient motorcycle oils, therefore, can be a difficult challenge. Formulating to reduce friction may cause clutch slippage and reducing the viscosity grade in motorcycles must be done carefully due to the need for gear protection.
Technical Paper

Engine Seizure Monitoring System Using Wear Debris Analysis and Particle Measurement

2016-04-05
2016-01-0888
Several attempts have been reported in the past decade or so which measured the sizes of particles in lubricant oil in order to monitor sliding conditions (1). Laser light extinction is typically used for the measurement. It would be an ideal if only wear debris particles in lubricant oil could be measured. However, in addition to wear debris, particles such as air bubbles, sludge and foreign contaminants in lubricant oil are also measured. The wear debris particles couldn't have been separated from other particles, and therefore this method couldn't have been applied to measurement devices for detection when maintenance service is required and how the wear state goes on. It is not possible to grasp the abnormal wear in real time by the conventional techniques such as intermittent Ferro graphic analysis. In addition, it is no way to detect which particle size to be measured by the particle counter alone.
Technical Paper

Prediction of Piston Skirt Scuffing via 3D Piston Motion Simulation

2016-04-05
2016-01-1044
This paper describes the establishment of a new method for predicting piston skirt scuffing in the internal combustion engine of a passenger car. The authors previously constructed and reported a method that uses 3D piston motion simulation to predict piston slap noise and piston skirt friction. However, that simulation did not have a clear index for evaluation of scuffing that involves piston skirt erosion, and it impressed shortage of the predictive accuracy of a scuffing. Therefore, the authors derived a new evaluation index for piston skirt scuffing by actually operating an internal combustion engine using multiple types of pistons to reproduce the conditions under which scuffing occurs, and comparing with the results of calculating the same conditions by piston motion simulation.
Technical Paper

Influence of Shock Absorber Friction on Vehicle Ride-Comfort Studied by Numerical Simulation Using Classical Single Wheel Model

2018-04-03
2018-01-0692
Along with the suspension improvement in these two decades, it is well known that the suspension friction force became one of major parameters to affect ride comfort performance. However, it was difficult to carry out quantitative prediction on ride comfort improvement against friction force change with high correlation. It was difficult to analyze correlation between actual vehicle performance and simulation since there were difficulties in controlling damping force and friction individually. On the other hand, magneto-rheological shock absorber (MR Shock) has had several applications and widely spread to passenger vehicles. The large variation and high response of damping force especially in slow piston speed region contributes to achieve an excellent vehicle dynamics performance. However, MR Shock shows the high friction characteristics, due to the unique sliding regime of internal parts. It is said that this high friction characteristic is causing obstacles in ride-comfort.
Technical Paper

Influence of Ductility Ingredients of Structural Adhesives on Fracture Energy under Static Mixed-Mode Loading

2017-03-28
2017-01-0473
In recent years, adhesive bonding is increasingly being applied in the construction of vehicle frames in order to improve body stiffness and crash performance. Regarding crash performance, the behavior of impacted components is affected by the fracture energy value of the adhesive. However, the relationship between the ductility and fracture energy values under mixed-mode loadings has not been sufficiently evaluated. In this paper, the fracture energy of three structural adhesives in a static mixed-mode loading using Double Cantilever Beam (DCB) specimens is presented. To derive the fracture energy values, the Compliance Based Beam Method (CBBM) was used, which allowed for precise determination of fracture energy values. Static mixed-mode loading tests were performed in six configurations of mixed-mode loading, ranging from pure peel mode state to almost pure shear mode state.
Technical Paper

Quantitative Analysis of Leakage Suppression of DLC Coating on Piston Ring

2017-03-28
2017-01-0457
Piston ring wear in gasoline engine induces deterioration of emissions performance due to leakage of blow-by gas, instability of idling caused by reduced compression in combustion chamber, and to generate early degeneration of engine oil. We examined anti-wear performance of DLC coating on piston ring, which had been recently reported as an effective method for improving the abrasion resistance. As a result, wear rate remained low under the condition of DLC existence on sliding surface, but once DLC was worn out completely, wear of the piston ring was accelerated and its life became shorter than piston ring without DLC. In this research, we designed reciprocating test apparatus that operates at much higher velocity range, and characterized the frictional materials of the piston ring and sleeve and the DLC as a protective film, a vapor phase epitaxy (VPE) was actively used as a means to form certain level of convex and concave shape on its surface.
Technical Paper

Prediction of Power Transmission Efficiency for Two-Mode Half-Toroidal IVT

2018-04-03
2018-01-1060
Infinitely variable transmission (IVT) is one of the methods used to extend the ratio coverage. In this paper, a dynamic behavior analysis technology was developed for an IVT utilizing a half-toroidal variator as the shifting device. The traction coefficient of traction fluid used for the half-toroidal IVT varies greatly according to contact surface slip rate, contact pressure and fluid temperature. This paper used measurement values from a four-roller machine to identify the coefficient, and then applied it to the dynamic behavior analysis. Use of the identified traction coefficient enabled power transmission characteristic predictions of a half-toroidal variator. To reproduce the elastic deformation in actual operation, the research used the Finite Element Method (FEM) for modeling. This model was also used to visualize the frictional state of traction surfaces during operation.
Technical Paper

Non-Destructive Measurement of Residual Strain in Connecting Rods Using Neutrons

2018-04-03
2018-01-1063
Increasing the strength of materials is effective in reducing weight and boosting structural part performance, but there are cases in where the residual strain generated during the process of manufacturing of high-strength materials results in a decline of durability. It is therefore important to understand how the residual strain in a manufactured component changes due to processing conditions. In the case of a connecting rod, because the strain load on the connecting rod rib sections is high, it is necessary to clearly understand the distribution of strain in the ribs. However, because residual strain is generally measured by using X-ray diffractometers or strain gauges, measurements are limited to the surface layer of the parts. Neutron beams, however, have a higher penetration depth than X-rays, allowing for strain measurement in the bulk material.
Technical Paper

Analysis of the Pressure Drop Increase Mechanism by Ash Accumulated of Coated GPF

2019-04-02
2019-01-0981
With accelerating exhaust gas regulations in recent years, not only CO / HC / NOx but also PN regulation represented by Euro 6 d, China 6 are getting stricter. PN reduction by engine combustion technology development also progresses, but considering RDE, PN reduction by after treatment technology is also indispensable. To reduce PN exhausted from the gasoline engine, it is effective to equip GPF with a filter structure. Considering the installation of GPF in limited space, we developed a system that so far replaces the second TWC with GPF for the TWC 2 bed system. In order to replace the second TWC with GPF, we chose the coated GPF with filtering and TWC functions. Since the initial pressure drop and the catalyst amount (purification performance) of coated GPF have a conflicting relationship, we developed the coated GPF that can achieve both the low initial pressure drop and high purification performance.
Technical Paper

Prediction of Ductile Fracture Propagation of High Strength Steels in Automotive Structures

2019-04-02
2019-01-1097
Initiation and propagation of ductile fractures in crashed automotive components made from high strength steels are investigated in order to understand the mechanism of fracture propagation. Fracture of these components is often prone to occur at the sheet edge in a strain concentration zone under crash deformation. The fracture then extends intricately to the inside of the structure under the influence of the local stress and strain field. In this study, a simple tensile test and a 3-point bending test of high strength steels with tensile strengths of 590 MPa and 1180 MPa are carried out. In the tensile test, a coupon having a hole and a notch is deformed in a uniaxial condition. The effect of the notch type on the strain concentration and fracture behavior are investigated by using a digital imaging strain measurement system.
X