Refine Your Search

Topic

Author

Search Results

Journal Article

Advanced Control System of Variable Compression Ratio (VCR) Engine with Dual Piston Mechanism

2009-04-20
2009-01-1063
A dual piston Variable Compression Ratio (VCR) engine has been newly developed. This compact VCR system uses the inertia force and hydraulic pressure accompanying the reciprocating motion of the piston to raise and lower the outer piston and switches the compression ratio in two stages. For the torque characteristic enhancement and the knocking prevention when the compression ratio is being switched, it is necessary to carry out engine controls based on accurate compression ratio judgment. In order to accurately judge compression ratio switching timing, a control system employing the Hidden Markov Model (HMM) was used to analyze vibration generated during the compression ratio switching. Also, in order to realize smooth torque characteristics, an ignition timing control system that separately controls each cylinder and simultaneously performs knocking control was constructed.
Journal Article

Development of Feedback-Based Active Road Noise Control Technology for Noise in Multiple Narrow-Frequency Bands and Integration with Booming Noise Active Noise Control System

2015-04-14
2015-01-0660
When a vehicle is in motion, noise is generated in the cabin that is composed of noise in multiple narrow-frequency bands and caused by input from the road surface. This type of noise is termed low-frequency-band road noise, and its reduction is sought in order to increase occupant comfort. The research discussed in this paper used feedback control technology as the basis for the development of an active noise control technology able to simultaneously reduce noise in multiple narrow-frequency bands. Methods of connecting multiple single-frequency adaptive notch filters, a type of adaptive filter, were investigated. Based on the results, a method of connecting multiple filters that would mitigate mutual interference caused by different controller transmission characteristics was proposed.
Journal Article

Application of Engine Load Estimation Method Using Crank Angular Velocity Variation to Spark Advance Control

2014-11-11
2014-32-0065
The technology to estimate engine load using the amplitude of crankshaft angular velocity variation during a cycle, which is referred to as “Δω (delta omega)”, in a four-stroke single-cylinder gasoline engine has been established in our former studies. This study was aimed to apply this technology to the spark advance control system for small motorcycles. The cyclic variation of the Δω signal, which affects engine load detection accuracy, was a crucial issue when developing the system. To solve this issue, filtering functions that can cope with various running conditions were incorporated into the computation process that estimates engine loads from Δω signals. In addition, the system made it possible to classify engine load into two levels without a throttle sensor currently used. We have thus successfully developed the new spark advance system that is controlled in accordance with the engine speed and load.
Journal Article

Development of Li-ion Battery Control Technology for HEV

2015-04-14
2015-01-0251
The mounting of lithium-ion batteries (LIB) in hybrid electric vehicles (HEV) calls for the configuration of highly robust control systems. When mounting LIBs in the vehicle, it is important to accurately ascertain and precisely control the state of the battery. In order to achieve high durability, it is important to configure highly reliable systems capable of dependably preventing overcharging as well as to have control technology based on software that can contribute to extended battery life. The system configuration applies an overcharge prevention system that uses voltage detection with an emphasis on reliability. Furthermore, a method for varying the range of state of charge (SOC) control in the vehicle according to the battery state is implemented to assure durability. In order to achieve this, battery-state detection technology was developed for the purpose of correctly detecting and judging the battery state.
Technical Paper

Onboard Ethanol-Gasoline Separation System for Octane-on-Demand Vehicle

2020-04-14
2020-01-0350
Bioethanol is being used as an alternative fuel throughout the world based on considerations of reduction of CO2 emissions and sustainability. It is widely known that ethanol has an advantage of high anti-knock quality. In order to use the ethanol in ethanol-blended gasoline to control knocking, the research discussed in this paper sought to develop a fuel separation system that would separate ethanol-blended gasoline into a high-octane-number fuel (high-ethanol-concentration fuel) and a low-octane-number fuel (low-ethanol-concentration fuel) in the vehicle. The research developed a small fuel separation system, and employed a layout in which the system was fitted in the fuel tank based on considerations of reducing the effect on cabin space and maintaining safety in the event of a collision. The total volume of the components fitted in the fuel tank is 6.6 liters.
Journal Article

Multi-Variable Air-Path Management for a Clean Diesel Engine Using Model Predictive Control

2009-04-20
2009-01-0733
Recently, emission regulations have been strict in many countries, and it is very difficult technical issue to reduce emissions of diesel cars. In order to reduce the emissions, various combustion technologies such as Massive EGR, PCCI, Rich combustion, etc. have been researched. The combustion technologies require precise control of the states of in-cylinder gas (air mass flow, EGR rate etc.). However, a conventional controller such as PID controller could not provide sufficient control accuracy of the states of in-cylinder gas because the air-pass system controlled by an EGR valve, a throttle valve, a variable nozzle turbo, etc. is a multi-input, multi-output (MIMO) coupled system. Model predictive control (MPC) is well known as the advanced MIMO control method for industrial process. Generally, the sampling period of industrial process is rather long so there is enough time to carry out the optimization calculation for MPC.
Technical Paper

Management System for Continuously Variable Valve Lift Gasoline Engine

2007-04-16
2007-01-1200
A continuously variable valve lift gasoline engine can improve fuel consumption by reducing pumping loss and increase maximum torque by optimizing valve lift and cam phase according to engine speed. In this research, a new control system to simultaneously ensure good driveability and low emissions was developed for this low fuel consumption, high power engine. New suction air management through a master-slave control made it possible to achieve low fuel consumption and good driveability. To regulate the idle speed, a new controller featuring a two-degree-of-freedom sliding-mode algorithm with cooperative control was designed. This controller can improve the stability of idle speed and achieve the idle operation with a lower engine speed. To reduce emissions during cold start condition, an ignition timing control was developed that combine I-P control with a sliding mode control algorithm.
Technical Paper

The Validity of EPS Control System Development using HILS

2010-04-12
2010-01-0008
In recent years, the increased use of electric power steering in vehicles has increased the importance of issues such as making systems more compact and lightweight, and dealing with increased development man-hours. To increase development efficiency, the use of a “Hardware in the loop simulator” (HILS) is being tested to shift from the previous development method that relied on a driver's subjective evaluation in an actual vehicle test to bench-test development. Using HILS enables tasks such as specification studies, performance forecasts, issue identification and countermeasure proposals to be performed at an early stage of development even when there is no prototype vehicle. This report describes a case study of using HILS to solve the issues of reducing the load by adjusting the geometric specifications around the kingpin and eliminating the tradeoff by adding a new EPS control algorithm in order to make the electric power steering (EPS) more compact and lightweight.
Technical Paper

Engine Knock Toughness Improvement Through Water Jacket Optimization

2003-10-27
2003-01-3259
Improvement of engine cycle thermal efficiency is an effective way to increase engine torque and to reduce fuel consumption simultaneously. However, the extent of the improvement is limited by engine knock, which is more evident at low engine speeds when combustion flame propagation is relatively slow. To prevent engine damage due to knock, the spark ignition timing of a gasoline engine is usually controlled by a knock sensor. Therefore, an engine's ignition timing cannot be set freely to achieve best engine performance and fuel economy. Whether ignition timings for a multi-cylinder engine are the same or can be set differently for each cylinder, it is not desirable for each cylinder has big deviation from the median with respect to knock tendency. It is apparent that effective measures to improve engine knock toughness should address both uniformity of all cylinders of a multi-cylinder engine and improvement of median knock toughness.
Technical Paper

Control Device of Electronically Controlled Fuel Injection System of Air-cooled Engines for Small Motorcycles

2004-03-08
2004-01-0901
In conventional electronically controlled fuel injection systems, when the battery is inadequately charged, the small amount of electric power generated from the alternator by the kick starter operation is consumed by all electrical loads including the battery. This causes a voltage drop, hence the fuel injection system does not function due to a power shortage. To eliminate the power shortage, an installed relay circuit opens all electric loads other than the fuel injection system. This allows the fuel injection system to use all the electric power generated by the kick starter operation aided through using an additionally incorporated condenser. This type of electric power control system has been incorporated into the ECU. Thus, the control system has been realized that permits starting of an engine by using the kick-starter even when the battery is completely discharged.
Technical Paper

Study on Combustion Monitoring System for Formula One Engines Using Ionic Current Measurement

2004-06-08
2004-01-1921
Formula One engines, which are the pursuit of the ultimate in performance, tend to be comparatively vulnerable to durability issues. These engines sometimes run under a state of unstable combustion as compensation for improved fuel economy. To cope with these issues, there have been strong demands in the racing field for a technology that will allow constant monitoring and prompt action to be carried out on system malfunctions and failures, as well as unstable combustion. The research program described in this paper deals with an onboard technology for monitoring combustion under all the operational conditions using ionic current measurement. The technology will possibly be applied to engine management and car-to-pit communications via telemetering. The scope of the control it offers includes; detection of misfire and hesitation, detection and management of detonation, and management of lean-burn combustion.
Technical Paper

Honda's 5 Speed All Clutch To Clutch Automatic Transmission

2002-03-04
2002-01-0932
Honda has developed a new 5 speed all clutch to clutch automatic transmission (AT) as the next generation AT for passenger cars and succeeded in shortening the overall length, increasing the efficiency and improving the shift feeling by enhancing the intelligence of the system. This paper describes the mechanical structure, the new direct control system and the newest shift control method of the AT system.
Technical Paper

The Development of a High Fuel Economy and High Performance Four-Valve Lean Burn Engine

1992-02-01
920455
The reduction of fuel consumption is of great importance to automobile manufacturers. As a prospective means to achieve fuel economy, lean burn is being investigated at various research organizations and automobile manufacturers and a number of studies on lean-burn technology have been reported to this date. This paper describes the development of a four-valve lean-burn engine; especially the improvement of the combustion, the development of an engine management system, and the achievement of vehicle test results. Major themes discussed in this paper are (1) the improvement of brake-specific fuel consumption under partial load conditions and the achievement of high output power by adopting an optimized swirl ratio and a variable-swirl system with a specially designed variable valve timing and lift mechanism, (2) the development of an air-fuel ratio control system, (3) the improvement of fuel economy as a vehicle and (4) an approach to satisfy the NOx emission standard.
Technical Paper

Development of a New 1.5L I4 Turbocharged Gasoline Direct Injection Engine

2016-04-05
2016-01-1020
A 1.5 L downsizing turbocharged engine was developed to achieve both driving and environmental performance. The engine is intended to replace 1.8 - 2.4 L class NA engines. In downsizing turbocharged engines, mixture homogeneity is important for suppressing knocking and emission reduction. Particularly under high load, creating rapid combustion and a homogeneous mixture are key technologies. The authors used a long-stroke direct injection engine, which has outstanding rapid combustion and thermal efficiency, as a base engine meeting these requirements. They combined this with a high-tumble port and shallow-dish piston intended to support tumble flow. The combination enhanced flow within the cylinder. The combustion system was built to include a sodium-filled exhaust valve to reduce knocking and a multi-hole injector (six holes) for mixture homogeneity and to reduce the fuel wall wetting.
Technical Paper

New 1.0L I3 Turbocharged Gasoline Direct Injection Engine

2017-03-28
2017-01-1029
To comply with the environmental demands for CO2 reduction without compromising driving performance, a new 1.0 liter I3 turbocharged gasoline direct injection engine has been developed. This engine is the smallest product in the new Honda VTEC TURBO engine series (1), and it is intended to be used in small to medium-sized passenger car category vehicles, enhancing both fuel economy through downsizing, state-of-the-art friction reduction technologies such as electrically controlled variable displacement oil pump and timing belt in oil system, and also driving performance through turbocharging with an electrically controlled waste gate. This developed engine has many features in common with other VTEC TURBO engines such as the 1.5 liter I4 turbocharged engine (2) (3), which has been introduced already into the market.
Technical Paper

Comparison of Three Active Chassis Control Methods for Stabilizing Yaw Moments

1994-03-01
940870
Using stabilizing yaw-moment diagrams, the authors analyzed three methods of active chassis control for their effect and effective ranges during cornering maneuvers. The following results were obtained: controlling the transverse distribution of driving and braking forces cancels the changes in a vehicle's dynamic characteristics caused by acceleration and deceleration. Controlling the distribution of roll stiffness is only effective in ranges with high lateral acceleration, and the effect varies depending on the longitudinal weight distribution. Controlling the rear wheel steering angle is most effective in a range with a small side slip angle, but this effect decreases with an increase in the angle, especially during deceleration.
Technical Paper

MBT Control Utilizing Crank Angle of Maximum Combustion Pressure

1989-02-01
890759
For better power output and fuel economy of a four stroke cycle ignition engine, the ignition timing should preferably be set to the minimum spark advance for best torque (MBT). It is found that when the ignition timing is set MBT, the crank angle of the maximum combustion pressure (θpmax) usually lies between 12 and 14 deg after top dead center (ATDC) regardless of any engine specifications or operating factors. Therefore, the ignition timing can be controlled to be MBT by using the θpmax. This paper describes the relationship between the θpmax and MBT by both experimental results and numerical calculations, and MBT control system utilizing θpmax. And the test results by using this system are also described.
Technical Paper

Pre-Ignition Phenomena of Methanol Fuel (M85) by the Post-Ignition Technique

1989-09-01
892061
Pre-ignition phenomena of methanol fuel (M85) and unleaded premium gasoline were studied with use of the post-ignition technique. The combustion pressure as well as a signal from the pre-ignition detector were analyzed. It was found that methanol fuel is more susceptible to pre-ignition compared to gasoline fuel. Large cycle-by-cycle variations are present with combustion by surface ignition at the time of pre-ignition. This was caused by wide variations in the 0% mass fraction burned point. Since ionization signals from the pre-ignition detector prior to spark ignition indicate the 0% mass fraction burned point by surface ignition, prediction of pre-ignition is possible with use of the post-ignition technique. Platinum tipped spark plugs were found to be highly susceptible to pre-ignition with methanol fuel.
Technical Paper

Study on Maximizing Exergy in Automotive Engines

2007-04-16
2007-01-0257
The use of waste heat for automobile engine that applied Rankine cycle from the viewpoint of exergy (available energy) was researched. In order to recover heat to high quality energy, a heat-management engine whose exhaust port was replaced with an innovative evaporation device was developed. With this engine, high temperature and high pressure steam (400 degree C, 8MPa) could be generated from a large amount of the exhaust loss. In addition, high temperature water (189 degree C) was obtained from cooling loss. Consequently, the system that recovered more exergy from waste heat was established. To verify the system, the Rankine cycle system was installed in a hybrid vehicle and the automatic control system to change steam temperature and pressure according to the load variation was constructed. As the result of vehicle testing, thermal efficiency was increased from 28.9% to 32.7% (by 13.2% increase) at 100km/h constant vehicle speed.
Technical Paper

Development of the Motor-Assist System for the Hybrid Automobile--The Insight Development of the Motor-Assist System for a Hybrid Car--Insight

2000-11-01
2000-01-C079
A motor-assist system has been developed and employed for the "Insight' hybrid car. The system consists of an internal combustion engine as the primary power source, with an electric motor placed around the engine's crankshaft. Such construction reduces the system's volume significantly and offers more flexibility for the power plant layout. The system's functions include regeneration during braking, an idle stop mechanism, driving power assistance, and power supply for the 12V electrical system. A proper energy management method for various driving modes has been established by combining these functions, and fuel economy is significantly improved as a result. As another control feature, an active motor vibration control system compensates the idling vibration that is unique to three-cylinder engines.
X