Refine Your Search

Topic

Author

Affiliation

Search Results

Video

A Study of PGM-Free Oxidation Catalyst YMnO3 for Diesel Exhaust Aftertreatment

2012-06-18
Manganese oxides show high catalytic activity for CO and HC oxidation without including platinum group metals (PGM). However, there are issues with both thermal stability and resistance to sulfur poisoning. We have studied perovskite-type YMnO3 (YMO) with the aim of simultaneously achieving both activity and durability. This paper describes the oxidation activity of PGM-free Ag/i-YMO, which is silver supported on improved-YMO (i-YMO). The Ag/i-YMO was obtained by the following two methods. First, Mn4+ ratio and specific surface area of YMO were increased by optimizing composition and preparation method. Second, the optimum amount of silver was supported on i-YMO. In model gas tests and engine bench tests, the Ag/i-YMO catalyst showed the same level of activity as that of the conventional Pt/?-Al2O3 (Pt = 3.0 g/L). In addition, there was no degradation with respect to either heat treatment (700°C, 90 h, air) or sulfur treatment (600°C to 200°C, total 60 h, 30 ppm SO2).
Technical Paper

Study on Emission Reducing Method with New Lean NOX Catalyst for Diesel Engines

2007-07-23
2007-01-1933
In recent years, emission regulations have become more stringent as a result of increased environmental awareness in each region of the world. For diesel engines, reducing NOX emissions is a difficult technical challenge.[1],[2],[3],[4]. To respond to these strict regulations, an exhaust gas aftertreatment system was developed, featuring a lean NOX catalyst (LNC) that uses a new chemical reaction mechanism to reduce NOX. The feature of the new LNC is the way it reduces NOX through an NH3-selective catalytic reduction (SCR), in which NOX adsorbed in the lean mixture condition is converted to NH3 in the rich mixture condition and reduced in the following lean mixture condition. Thus, the new system allows the effective reduction of NOX. However, in order to realize cleaner emission gases, precise engine control in response to the state of the exhaust aftertreatment system is essential.
Technical Paper

Development and Validation of the Finite Element Model for the Human Lower Limb of Pedestrians

2000-11-01
2000-01-SC22
An impact test procedure with a legform addressing lower limb injuries in car-pedestrian accidents has been proposed by EEVC/WG17. Although a high frequency of lower limb fractures is observed in recent accident data, this test procedure assesses knee injuries with a focus on trauma to the ligamentous structures. The goal of this study is to establish a methodology to understand injury mechanisms of both ligamentous damages and bone fractures in car-pedestrian accidents. A finite element (FE) model of the human lower limb was developed using PAM-CRASH™. The commercially available H-Dummy™ lower limb model developed by Nihon ESI for a seated position was modified to represent the standing posture of pedestrians. Mechanical properties for both bony structures and knee ligaments were determined from our extensive literature survey, and were carefully implemented in the model considering their strain rate dependency in order to simulate the dynamic response of the lower limb accurately.
Technical Paper

Study on HCCI-SI Combustion Using Fuels Ethanol Containing

2007-10-29
2007-01-4051
Bio-ethanol is one of the candidates for automotive alternative fuels. For reduction of carbon dioxide emissions, it is important to investigate its optimum combustion procedure. This study has explored effect of ethanol fuels on HCCI-SI hybrid combustion using dual fuel injection (DFI). Steady and transient characteristics of the HCCI-SI hybrid combustion were evaluated using a single cylinder engine and a four-cylinder engine equipped with two port injectors and a direct injector. The experimental results indicated that DFI has the potential for optimizing ignition timing of HCCI combustion and for suppressing knock in SI combustion under fixed compression ratio. The HCCI-SI hybrid combustion using DFI achieved increasing efficiency compared to conventional SI combustion.
Technical Paper

Improvement of visibility for vulnerable parties in traffic accidents

2001-06-04
2001-06-0142
More than half of fatalities in traffic accidents in Japan are the vulnerable parties in such accidents (pedestrians, motorcycles, bicycles). In most of these accidents, the cause is collision involving automobiles. Therefore, reasoning that early detection of such vulnerable parties would lead to a reduction in accidents, we conducted research on the following three systems: - Honda Night Vision System - For night-time detection of pedestrians using infrared cameras. - Active Headlights - For assuring night-time field of vision by directing illumination in the direction of vehicle travel through lights coupled with steering wheel turn and so on. - Inter-Vehicle Motorcycle-Automobile Communication System (IVCS) - Notifies drivers of each other's presence by providing information through communications systems installed on both vehicles. The results from research on these systems show that their use can be expected to have a positive effect in reducing the occurrence of accidents.
Technical Paper

Analysis of upper extremity response under side air bag loading

2001-06-04
2001-06-0016
Computer simulations, dummy experiments with a new enhanced upper extremity, and small female cadaver experiments were used to analyze the small female upper extremity response under side air bag loading. After establishing the initial position, three tests were performed with the 5th percentile female hybrid III dummy, and six experiments with small female cadaver subjects. A new 5th percentile female enhanced upper extremity was developed for the dummy experiments that included a two-axis wrist load cell in addition to the existing six-axis load cells in both the forearm and humerus. Forearm pronation was also included in the new dummy upper extremity to increase the biofidelity of the interaction with the handgrip. Instrumentation for both the cadaver and dummy tests included accelerometers and magnetohydrodynamic angular rate sensors on the forearm, humerus, upper and lower spine.
Technical Paper

Basic Understanding of Activated Radical Combustion and Its Two-Stroke Engine Application and Benefits

2000-06-19
2000-01-1836
For a better understanding of the auto-ignition phenomenon in internal combustion engines, consideration is given from the in-cylinder gas temperature aspect. Experimental results demonstrate that the in-cylinder gas temperature at the end of compression, namely, the “auto-ignition temperature” is deeply involved in the onset of auto-ignition. The relation between the gas exchange state and the auto-ignition temperature explains the mechanism of timing controlled auto-ignition, namely, Activated Radical (AR) Combustion. The auto-ignition temperature is maintained constant during the AR combustion state, thanks to the exhaust valve controlling the hot residual gas amount. Finally, the utilization of auto-ignition in gasoline engines is discussed from the methodology aspect.
Technical Paper

Investigations of Compatibility of ETBE Gasoline with Current Gasoline Vehicles

2006-10-16
2006-01-3381
Clarifying the impact of ETBE 8% blended fuel on current Japanese gasoline vehicles, under the Japan Clean Air Program II (JCAPII) we conducted exhaust emission tests, evaporative emission tests, durability tests on the exhaust after-treatment system, cold starting tests, and material immersion tests. ETBE 17% blended fuel was also investigated as a reference. The regulated exhaust emissions (CO, HC, and NOx) didn't increase with any increase of ETBE content in the fuel. In durability tests, no noticeable increase of exhaust emission after 40,000km was observed. In evaporative emissions tests, HSL (Hot Soak Loss) and DBL (Diurnal Breathing Loss) didn't increase. In cold starting tests, duration of cranking using ETBE 8% fuel was similar to that of ETBE 0%. In the material immersion tests, no influence of ETBE on these material properties was observed.
Technical Paper

R&D and Analysis of Energy Consumption Improvement Factor for Advanced Clean Energy HEVs

2005-10-24
2005-01-3828
Ultra-low energy consumption and ultra-low emission vehicle technologies have been developed by combining petroleum-alternative clean energy with a hybrid electric vehicle (HEV) system. Their component technologies cover a wide range of vehicle types, such as passenger cars, delivery trucks, and city buses, adsorbed natural gas (ANG), compressed natural gas (CNG), and dimethyl ether (DME) as fuels, series (S-HEV) and series/parallel (SP-HEV) for hybrid types, and as energy storage systems (ESSs), flywheel batteries (FWBs), capacitors, and lithium-ion (Li-ion) batteries. Evaluation tests confirmed that the energy consumption of the developed vehicles is 1/2 of that of conventional diesel vehicles, and the exhaust emission levels are comparable to Japan's ultra-low emission vehicle (J-ULEV) level.
Technical Paper

Study on Ignition Timing Control for Diesel Engines Using In-Cylinder Pressure Sensor

2006-04-03
2006-01-0180
As technologies for simultaneously maintaining the current high thermal efficiency of diesel engines and reducing particulate matter (PM) and nitrogen oxide (NOX) emissions, many new combustion concepts have been proposed, including premixed charge compression ignition (PCCI) and low-temperature combustion[1]. However, it is well known that since such new combustion techniques precisely control combustion temperatures and local air-fuel ratios by varying the amount of air, the exhaust gas recirculation (EGR) ratio and the fuel injection timing, they have the issues of being less stable than conventional combustion techniques and of performance that is subject to variance in the fuel and driving conditions. This study concerns a system that addresses these issues by detecting the ignition timing with in-cylinder pressure sensors and by controlling the fuel injection timing and the amount of EGR for optimum combustion onboard.
Technical Paper

Study of CNG Fueled Two-Wheeled Vehicle with Electronically Controlled Gas Injection System

2005-10-12
2005-32-0034
Owing to its combustion characteristics and chemical composition, natural gas features cleaner emissions and lower CO2 compared to gasoline under equal thermal efficiency. Natural gas can be a promising alternative energy source to respond to crude oil exhaustion and global warming issues. Focusing on the utility of natural gas, a feasibility study on CNG (Compressed Natural Gas) -fueled two-wheeled vehicles has been conducted. A proto-type two-wheeled vehicle was made based on a 125 cm3 class gasoline-fueled scooter. To adapt the engine to the use of CNG fuel, an electronically controlled gas injection system was applied to the fuel supply system. To provide abrasion resistance of engine valves and valve seats, the specific matter of gas-fuel was improved. Furthermore, a lubricant circulation passage was added to maintain the temperature of the pressure reducing valve.
Technical Paper

Development of Electronically Controlled Belt-type CVT for Motorcycles

2005-10-12
2005-32-0024
An electronically controlled belt-type CVT (Continuously Variable Transmission) has been developed for scooter type two-wheeled vehicles. Related to two-wheeled vehicles, the electronically controlled belt-type CVT has advantages over the conventional belt-type CVT, such as more compact and lighter weight. This was achieved by developing a new rubber belt-type. The new rubber belt-type CVT uses a rubber belt with high friction coefficient and pulleys made of aluminum. To obtain good shifting characteristics, the desired speed ratio related to throttle opening and drive speed is calculated. When moving, the actual speed ratio automatically adjusts to the desired value. For the shift modes, three shift modes, two automatic modes and one manual mode with six-speeds were prepared. The electronically controlled CVT increased the range of usable engine speeds compared to the conventional belt-type CVT. Therefore good drivability is maintained.
Technical Paper

Study on Combustion Monitoring System for Formula One Engines Using Ionic Current Measurement

2004-06-08
2004-01-1921
Formula One engines, which are the pursuit of the ultimate in performance, tend to be comparatively vulnerable to durability issues. These engines sometimes run under a state of unstable combustion as compensation for improved fuel economy. To cope with these issues, there have been strong demands in the racing field for a technology that will allow constant monitoring and prompt action to be carried out on system malfunctions and failures, as well as unstable combustion. The research program described in this paper deals with an onboard technology for monitoring combustion under all the operational conditions using ionic current measurement. The technology will possibly be applied to engine management and car-to-pit communications via telemetering. The scope of the control it offers includes; detection of misfire and hesitation, detection and management of detonation, and management of lean-burn combustion.
Technical Paper

Improvement of Heat Resistance for Lean NOx Catalyst

2004-03-08
2004-01-1495
When the alkali metal-supported catalyst was treated at 830°C, the NOx conversion decreased because the alkali metals in the catalyst layer gradually moved to the cordierite honeycomb layer and reacted with the cordierite elements. This phenomena decreased to be added the basic metal oxide (α) in the catalyst layer. The improved catalyst with α 2 showed higher performance than the conventional catalyst in the model gas test. Moreover, the emission values of NOx, HC, and CO were 50% or less than Japanese domestic regulation values even after 830°C×60h heat treatment in a vehicle test.
Technical Paper

Inhibition Effect of Ethanol on Homogeneous Charge Compression Ignition of Heptane

2008-10-06
2008-01-2504
It is important in the application of bio-ethanol in homogeneous-charge compression ignition (HCCI) engines to investigate the HCCI combustion characteristics of ethanol. As the inhibitory mechanism of ethanol on HCCI combustion is a key factor, simulated chemical reactions are necessary. In this study, chemical reaction simulations in the combustion chamber of a rapid compression machine (RCM) were performed in order to investigate the inhibitory mechanism of ethanol on the HCCI combustion of heptane. The sensitivity analysis results suggested that the OH radical consumption reaction by ethanol that occurs would inhibit the cool flame reaction of heptane. Furthermore, visualization of HCCI combustion with the RCM was conducted using a quartz glass combustion chamber head and ICCD camera. As a result, the cool flame luminescence intensity of heptane was reduced by the addition of ethanol.
Technical Paper

Influence of a Fast Injection Rate Common Rail Injector for the Spray and Combustion Characteristics of Diesel Engine

2011-04-12
2011-01-0687
For reduction of NOx and soot emission with conventional diesel diffusion combustion, the authors focused on enhancement of the rate of injection (hereafter referred to as RoI) to improve air availability, thus enhancing the fuel distribution and atomization. In order to increase opening ramp of the RoI (hereafter referred to as fast injection rate), a hydraulic circuit was improved and nozzle geometries were optimized to make the greatest use of the advantages of the hydraulic circuit. Two different common rail injectors were prepared for this research. One is a mass production-type injector with piezo actuator that achieved the EURO-V exhaust gas emission standards, and the other is a prototype injector equipped with the new hydraulic circuit. The nozzle needle of the prototype injector is directly actuated by high-pressure fuel from common rail to improve the RoI.
Technical Paper

Development of Intake Air Pressure Sensorless Fuel Injection System for Small Motorcycles

2011-11-08
2011-32-0564
A new control system using O₂ feedback control has been developed as an alternative to intake air pressure sensors. This control method uses the operational condition compensation coefficient Kbu. This coefficient encompasses the state of the engine and environmental conditions such as atmospheric pressure, and corrects fuel injection in response to changes in these factors. Kbu makes it possible to control the amount of fuel injection without depending on an intake air pressure sensor. It also makes it possible to carry out the appropriate air-fuel ratio correction even at times when O₂ feedback control is not operating, such as the cold period, when the engine is first started, or during transient operation, by using Kbu values recorded in the Engine Control Unit (henceforth ECU).
Technical Paper

A Study of High Power Output Diesel Engine with Low Peak Cylinder Pressure

2010-04-12
2010-01-1107
This study examined a high-speed, high-powered diesel engine featuring a pent-roof combustion chamber and straight ports, with the objective of improving the specific power of the engine while minimizing any increase in the maximum cylinder pressure (Pmax). The market and contemporary society expect improvements in the driving performance of diesel-powered automobiles, and increased specific power so that engine displacement can be reduced, which will lessen CO2 emissions. When specific power is increased through conventional methods accompanied with a considerable increase in Pmax, the engine weight is increased and friction worsens. Therefore, the authors examined new technologies that would allow to minimize any increase in Pmax by raising the rated speed from the 4000 rpm of the baseline engine to 5000 rpm, while maintaining the BMEP of the baseline engine.
Technical Paper

Next Generation Formed-In-Place Gasket (FIPG) Liquid Sealant for Automotive Intake Manifold Application

2009-04-20
2009-01-0996
Intake manifold is a part of an engine that supplies fuel/air mixture to the cylinder heads. Recently, silicone FIPG has been used for the two part design of the intake manifold. It is known that a small, but significant, amount of gasoline fuel can penetrate through silicone FIPG layer due to the flexible nature of the siloxane backbone. Since gasoline permeation is becoming more important because of more severe regulations, it is found that a new polyacrylate based FIPG dramatically reduces the gasoline fuel permeation. This study compares this new technology, polyacrylate FIPG sealant with silicone FIPG sealant used today for vehicle powertrain gasketing applications. Adhesion investigation on both aluminum and magnesium alloys, and oil resistance are also discussed in this study.
Technical Paper

Analysis of Factors Influencing Side Impact Compatibility

2009-04-20
2009-01-1430
To examine factors influencing side impact compatibility, as a first step, car-to-car tests were conducted to investigate the effect of sill interaction. As a result, it was found that sill interaction had a less significant effect on side impact performance than reducing the load aligned with the dummy. In addition, a series of Mobile Deformable Barrier (MDB) tests were performed to corroborate the conclusions of the car-to-car tests. Comparison of the results of these MDB tests showed that the effect of reducing loading aligned with the driver dummy is more significant than that of engagement with the target car's sill, which is consistent with the car-to-car test results.
X