Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Prediction Method of Surface Pressure against Gasket in Consideration of Creep on Cylinder Head in Air-Cooled Engines

2012-10-23
2012-32-0104
A method was designed to predict the gasket surface pressure in consideration of creep which occurs on the surface of the gasket side of the cylinder head in air-cooled engines. Creep caused by heat can cause major deformation on the gasket side of the cylinder head in air-cooled engines, which may result in combustion gas leaking from between the cylinder and cylinder head. Until now, there have been no reports of methods to accurately predict phenomena relating to this deformation in the initial stage of engine design. This study combined values of strain and temperature occurring on the gasket side of the cylinder head, obtained through FEM analysis of steady heat transfer and thermal stress, with unit test results showing the domains in which the influence of the creep is critical or not. This information was used to design a method to determine whether or not an engine's specifications fell into a domain in which creep would have an effect, and predict surface pressure.
Journal Article

Development of Temperature Estimation Method of Whole Engine Considering Heat Balance under Vehicle Running Conditions

2014-11-11
2014-32-0050
For detailed temperature estimates in the engine of a running motorcycle, newly researches were conducted on the method for calculation of temperature distribution using a three-dimensional (3D) thermal conductivity simulation after calculating the total balance of heat generation and heat dissipation of the engine using a one-dimensional (1D) thermal simulation. This project is targeted at air-cooled engines in which the cooling conditions vary significantly depending on the external shapes of the engines and the airflow around them. The heat balance is calculated using the 1D thermal simulation taking into account all the routes and processes for dissipation to the atmosphere of the heat that is generated by the combustion in the engine. The 1D engine cycle simulation is applied to calculate the heat transmission to the engine from the combustion. For the calculation of heat transfer within the engine, the engine components are converted to a one-dimensional model.
X