Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

In-Situ Measurement and Numerical Solution of Main Journal Bearing Lubrication in Actual Engine Environment

2016-04-05
2016-01-0894
A simple method is frequently used to calculate a reciprocating engine’s bearing load from the measured cylinder pressure. However, it has become apparent that engine downsizing and weight reduction cannot be achieved easily if an engine is designed based on the simple method. Because of this, an actual load on a bearing was measured, and the measured load values were compared with a bearing load distribution calculated from cylinder pressure. As a result, it was found that some of actual loads were about half of the calculated ones at certain crank angles. The connecting rod’s elastic deformation was focused on as a factor behind such differences, and the rod’s deformation due to the engine’s explosion load was studied. As a result, it was found that the rod part of the engine’s connecting rod was bent by 0.2 mm and became doglegged. Additional investigation regarding these findings would allow further engine downsizing.
Journal Article

Wear Properties of Car Engine Shaft in Actual Engine Environment

2015-04-14
2015-01-0686
When evaluating the wear properties of slide bearings for car engines, it is a common practice to conduct long-term physical test using a bearing tester for screening purposes according to the revolution speed of the shaft, supply oil temperature and bearing pressure experienced in the actual use of engines. The loading waveform applied depends on the capability of the tester that is loaded, and it is often difficult to apply a loading waveform equivalent to that of actual engines. To design an engine that is more compact or lighter, it is necessary to reduce the dimensions of slide bearings and the distance between bearings. This requires loading tests on a newly designed engine by applying a loading waveform equivalent to that of actual engines to slide bearings and their vicinity before conducting a firing test. We therefore conducted an engine firing test by attaching thin-film sensors to the slide bearing part of the engine and measured the actual load distribution.
Technical Paper

Quantitative Analysis of Leakage Suppression of DLC Coating on Piston Ring

2017-03-28
2017-01-0457
Piston ring wear in gasoline engine induces deterioration of emissions performance due to leakage of blow-by gas, instability of idling caused by reduced compression in combustion chamber, and to generate early degeneration of engine oil. We examined anti-wear performance of DLC coating on piston ring, which had been recently reported as an effective method for improving the abrasion resistance. As a result, wear rate remained low under the condition of DLC existence on sliding surface, but once DLC was worn out completely, wear of the piston ring was accelerated and its life became shorter than piston ring without DLC. In this research, we designed reciprocating test apparatus that operates at much higher velocity range, and characterized the frictional materials of the piston ring and sleeve and the DLC as a protective film, a vapor phase epitaxy (VPE) was actively used as a means to form certain level of convex and concave shape on its surface.
Technical Paper

Life Estimation of Rolling Bearings Based on the Colors on Sliding Surfaces

2019-04-02
2019-01-0180
It is experimentally known that the surface color of bearing balls gradually becomes brown during long term operation of the bearings under appropriate lubrication conditions. That exhibits the possibility of an estimation method for residual life of ball bearings without any abnormal wear on the surfaces by precise color measurements. Therefore, we examined what set colors on bearing balls by surface observation using scanning electron microscopy and subsurface analysis using transmission electron microscopy. Results showed that an amorphous carbon layer had gradually covered ball surfaces during operation of the bearings. The layer not only changed ball color but also made overall ball shapes closer to a complete sphere. The report also introduces a uniquely developed color analyzer which enabled color measurements on metallic surfaces, such as the above-mentioned balls.
Technical Paper

Effect of Surface Irregularities of Piston Ring and Sleeve Materials in High-Speed Reciprocating Test

2015-04-14
2015-01-0681
The reciprocating frictional test is a common approach for screening the materials of the piston and sleeve of an automobile engine. The frictional speed of this test is, however, limited mainly by the vibration of test apparatus due to the absence of damping factors in engines. Considering that the frictional velocity between the piston and sleeve reaches around 20 m/s, common test conditions at less than 2 m/s are not sufficient to understand the real phenomena at a frictional interface. We therefore developed a high-speed reciprocating test apparatus that can operate at a much higher speed range and examined two materials used for piston rings and sleeves. For the piston ring material, nitrided SUS440C was used. Plates were made of centrifugal cast iron FC250 or cast aluminum AC2B, which were coated with Nikasil. The experimental results showed that the lubrication regimes of the two plate materials were different even at the same reciprocating speeds.
Technical Paper

Study on the Cooling Method of Car Engine Pistons - Part 2, Cooling Using Heat Pipes

2015-04-14
2015-01-1649
In our preceding report [1], we showed that the thermal conductivity of a heat pipe dramatically improves during high-speed reciprocation. However, this cooling method has rarely been applied to car engine pistons because the thermal conductivity of commercially available heat pipes does not increase easily even if the pipe is subjected to high-speed reciprocation. In consideration of the data from our preceding report, we decided to investigate heat pipe designs for car engine pistons, propose an optimum design, and conduct thermal analysis of the design. As a result, we found that it is possible to transport heat from the central piston head area, where cooling is most needed, to the piston skirt area, suggesting the possibility of efficient cooling.
Technical Paper

Study on the Cooling Method of Car Engine Pistons - Part 1, Basic Test for Achieving High Heat Transfer Coefficient

2015-04-14
2015-01-1653
Car engine piston cooling is an important technology for improving the compression ratio and suppressing the deformation of pistons. It is well known that thermal conductivity improves dramatically through the use of heat pipes in computers and air conditioners. However, the heat pipes in general use have not been used for the cooling of engines because the flow of gas and liquid is disturbed by vibration and the thermal conductivity becomes excessively low. We therefore developed an original heat pipe and conducted an experiment to determine its heat transfer coefficient using a high-speed reciprocation testing apparatus. Although the test was based on a single heat pipe unit, we succeeded in improving the heat transfer coefficient during high-speed reciprocation by a factor of 1.6 compared to the heat transfer coefficient at standstill. This report describes the observed characteristics and the method of verification.
X