Refine Your Search

Topic

Author

Search Results

Technical Paper

Management System for Continuously Variable Valve Lift Gasoline Engine

2007-04-16
2007-01-1200
A continuously variable valve lift gasoline engine can improve fuel consumption by reducing pumping loss and increase maximum torque by optimizing valve lift and cam phase according to engine speed. In this research, a new control system to simultaneously ensure good driveability and low emissions was developed for this low fuel consumption, high power engine. New suction air management through a master-slave control made it possible to achieve low fuel consumption and good driveability. To regulate the idle speed, a new controller featuring a two-degree-of-freedom sliding-mode algorithm with cooperative control was designed. This controller can improve the stability of idle speed and achieve the idle operation with a lower engine speed. To reduce emissions during cold start condition, an ignition timing control was developed that combine I-P control with a sliding mode control algorithm.
Technical Paper

Development Procedure for Interior Noise Performance by Virtual Vehicle Refinement, Combining Experimental and Numerical Component Models

2001-04-30
2001-01-1538
This paper summarizes the development of a predictive vibro-acoustic full vehicle model of a mid-size sedan and focuses on the engineering analysis procedures used to evaluate the design performance related to engine induced noise and vibration. The vehicle model is build up from a mixture of test-based and finite element component models. FRF Based Substructuring is used for their assembly. The virtual car model is loaded by engine forces resulting from indirect force identification. This force-set includes combustion, inertia, piston slap and crank bearing forces, for engine harmonics from 0.5 to 10th order. Such forced response analysis yields vibration levels at every component, at every interface between components, and interior noise predictions. The target is to provide the vehicle NVH manager with the insight required to identify major causes for peak noise levels and to set targets and develop an action plan for every component design team.
Technical Paper

How to Predict Powertrain Vibration at the Engine Mounting Points Under Running Conditions

2001-04-30
2001-01-1592
Recently, the eigenvalue analysis and the frequency response analysis using the finite element method (FEM) is commonly used, since the vibration characteristic of the powertrain is an important specification which causes the influence on the booming noise and the durability of each parts. However, the eigenvalue analysis and the frequency response analysis cannot take into account of the dynamic behavior of the cranktrain and thenonlinear characteristics. This paper presents a new approach which considers the dynamic behavior of the crankshaft and thenonlinear oil film characteristics of the main bearings and the engine mounts for accurately predicting the vibration level at the engine mounting points under running conditions. By applying this approach to an in-line four cylinder engine, the predicted vibration level is reasonably comparable with experimental result.
Technical Paper

Study on HCCI-SI Combustion Using Fuels Ethanol Containing

2007-10-29
2007-01-4051
Bio-ethanol is one of the candidates for automotive alternative fuels. For reduction of carbon dioxide emissions, it is important to investigate its optimum combustion procedure. This study has explored effect of ethanol fuels on HCCI-SI hybrid combustion using dual fuel injection (DFI). Steady and transient characteristics of the HCCI-SI hybrid combustion were evaluated using a single cylinder engine and a four-cylinder engine equipped with two port injectors and a direct injector. The experimental results indicated that DFI has the potential for optimizing ignition timing of HCCI combustion and for suppressing knock in SI combustion under fixed compression ratio. The HCCI-SI hybrid combustion using DFI achieved increasing efficiency compared to conventional SI combustion.
Technical Paper

Development of a Magnetic Coupling Water Pump for a Four-Stroke 50cm3 Scooter Engine

2002-03-04
2002-01-0858
In the development of a magnetic-coupling water pump, the pulling-out (disengagement) of a coupling that led to the stopping of an impeller was a concern. Upon analysis of the behavior of the magnetic coupling, presence of two types of the pulling-out was found, that is, the pulling-out resulting from a lack of transfer torque in the high-speed revolutions and the pulling-out due to the resonance of an inner magnet and an outer magnet. Main factors that affect the pulling-out are the angular velocity input to the drive side, the moment of inertia of the driven side, characteristics of the magnetic coupling, and a damping from coolant. Using a measurement and simulation of the behavior of the water pump, factors were analyzed and the process of pulling-out was clarified. As a result, design specifications that prevented the pulling-out were established.
Technical Paper

69 Development of Gear Train Behavioral Analysis Technologies Considering Non-linear Elements

2002-10-29
2002-32-1838
A numerical calculation method, which enables the analysis of gear train behavior including non-linear elements in a motorcycle engine, was established. During the modeling process, it was confirmed that factors such as bearing distortion, radial bearing clearance and elastic deformation of a tooth flank could not be neglected because they effect the rotation behavior. To keep a high accuracy, those factors were included in the simulation model, after they were converted into the rigidity elements along the rotational direction of each gear model. In addition, the model was combined with a crankshaft behavior calculation model for a driving and excitation source. A time domain numerical integration method was used to perform the transient response simulation across a wide range of engine speeds. A jump phenomenon of response behavior of the driven gear was predicted that is a characteristic of non-linear response. The phenomenon was also observed in a physical test.
Technical Paper

49 Development of Pb-free Free-Cutting Steel Enabling Omission of Normalizing for Crankshafts

2002-10-29
2002-32-1818
Crankshafts of motorcycles require high strength, high reliability and low manufacturing cost. Recently, a reduction of Pb content in the free-cutting steel, which is harmful substance, is required. In order to satisfy such requirements, we started the development of Pb-free free-cutting steel which simultaneously enabled the omission of the normalizing process. For the omission of normalizing process, we adjusted the content of Carbon, Manganese and Nitrogen of the steel. This developed steel can obtain adequate hardness and fine microstructure by air-cooling after forging. Pb-free free-cutting steel was developed based on Calcium-sulfur free-cutting steel. Pb free-cutting steel is excellent in cutting chips frangibility in lathe process. We thought that it was necessary that cutting chips frangibility of developed steel was equal to Pb free-cutting steel. It was found that cutting chips frangibility depend on a non-metallic inclusion's composition, shape and dispersion.
Technical Paper

Characteristics of Vaporizing Continuous Multi-Component Fuel Sprays in a Port Fuel Injection Gasoline Engine

2001-03-05
2001-01-1231
Vaporization models for continuous multi-component liquid sprays and liquid wall films are presented using a continuous thermodynamics formulation. The models were implemented in the KIVA3V-Release 2.0 code. The models are first applied to clarify the characteristics of vaporizing continuous multi-component liquid wall films and liquid drops, and then applied to numerically analyze a practical continuous multi-component fuel - gasoline behavior in a 4-valve port fuel injection (PFI) gasoline engine under warm conditions. Corresponding computations with single-component fuels are also performed and presented for comparison purposes. As compared to the results of its single-component counterpart, the vaporizing continuous multi-component fuel drop displays a larger vaporization rate initially and a smaller vaporization rate as it becomes more and more dominated by heavy species.
Technical Paper

Development of the Motor-Assist System for the Hybrid Automobile--The Insight Development of the Motor-Assist System for a Hybrid Car--Insight

2000-11-01
2000-01-C079
A motor-assist system has been developed and employed for the "Insight' hybrid car. The system consists of an internal combustion engine as the primary power source, with an electric motor placed around the engine's crankshaft. Such construction reduces the system's volume significantly and offers more flexibility for the power plant layout. The system's functions include regeneration during braking, an idle stop mechanism, driving power assistance, and power supply for the 12V electrical system. A proper energy management method for various driving modes has been established by combining these functions, and fuel economy is significantly improved as a result. As another control feature, an active motor vibration control system compensates the idling vibration that is unique to three-cylinder engines.
Technical Paper

Ignition and Combustion Simulation in HCCI Engines

2006-04-03
2006-01-1522
Combustion simulation is an effective tool in overcoming the issues associated with gasoline HCCI engines, controlling ignition timing and extending the operating range. The research discussed in this paper commenced by optimizing the reaction mechanism from the perspective of ignition delay using the genetic algorithm (GA) method. Simulations employing the optimized reaction mechanism were then able to more accurately reproduce the ignition timing of iso-octane and primary reference fuels (PRF). Ignition times obtained from simulations showed excellent correlation with ignition times measured using these fuels in shock tube experiments, and in engines with both homogeneous and non-homogeneous fuel distributions. The use of the PRF mechanism for gasoline with an equivalent octane number enables excellent reproduction of ignition timing even when EGR is employed.
Technical Paper

Research and Analysis of ISG Belt-drive System for Idling Stop System

2006-04-03
2006-01-1501
To enable a belt-driven Integrated Starter Generator (ISG) to be used in an idle-stop system, the belt system must be capable of both driving the accessories and of starting the engine. Conventional belt systems required a higher tension setting to accomplish this, and the associated increase in friction opposed the achievement of better fuel economy. In this research, an auto-tensioner with a contraction suppression function that utilizes the incompressibility of fluid as well as a belt system that enables the auto-tensioner to be optimally located were proposed. The behavior of the belt system was measured in detail by testing, and the cause of the fluctuation of the belt tension was clarified by analysis. A method of controlling the ISG torque to flatten out tension fluctuations was devised, and its effectiveness was confirmed by simulation and testing. From the overall results of the research, a belt system that does not require a high tension setting was realized.
Technical Paper

Development of Hybrid System for 2006 Compact Sedan

2006-04-03
2006-01-1503
An Integrated Motor Assist (IMA) system for the 2006 Civic Hybrid has been developed, with the goal of having class leading fuel economy among compact vehicles and enhanced driving performance. The IMA system has been enhanced for greater power and efficiency. Combining the 3-stage i-VTEC engine with a higher power, higher efficiency electric motor assist mechanism enables an increase in deceleration regeneration energy and a drive mode powered by the electric motor alone. The engine is a newly developed 3-stage i-VTEC, based on the 1.3L SOHC i-DSI engine. The new 3-stage i-VTEC engine incorporates both a VTEC mechanism that switches cam profiles in low and high engine speed ranges, and a cylinder deactivation mechanism. The CVT has both an expanded ratio range and a higher final gear ratio. Through these technological enhancements, we have achieved the highest levels of fuel economy in the compact class and enhanced acceleration performance.
Technical Paper

Investigations of Compatibility of ETBE Gasoline with Current Gasoline Vehicles

2006-10-16
2006-01-3381
Clarifying the impact of ETBE 8% blended fuel on current Japanese gasoline vehicles, under the Japan Clean Air Program II (JCAPII) we conducted exhaust emission tests, evaporative emission tests, durability tests on the exhaust after-treatment system, cold starting tests, and material immersion tests. ETBE 17% blended fuel was also investigated as a reference. The regulated exhaust emissions (CO, HC, and NOx) didn't increase with any increase of ETBE content in the fuel. In durability tests, no noticeable increase of exhaust emission after 40,000km was observed. In evaporative emissions tests, HSL (Hot Soak Loss) and DBL (Diurnal Breathing Loss) didn't increase. In cold starting tests, duration of cranking using ETBE 8% fuel was similar to that of ETBE 0%. In the material immersion tests, no influence of ETBE on these material properties was observed.
Technical Paper

Study on Ignition Timing Control for Diesel Engines Using In-Cylinder Pressure Sensor

2006-04-03
2006-01-0180
As technologies for simultaneously maintaining the current high thermal efficiency of diesel engines and reducing particulate matter (PM) and nitrogen oxide (NOX) emissions, many new combustion concepts have been proposed, including premixed charge compression ignition (PCCI) and low-temperature combustion[1]. However, it is well known that since such new combustion techniques precisely control combustion temperatures and local air-fuel ratios by varying the amount of air, the exhaust gas recirculation (EGR) ratio and the fuel injection timing, they have the issues of being less stable than conventional combustion techniques and of performance that is subject to variance in the fuel and driving conditions. This study concerns a system that addresses these issues by detecting the ignition timing with in-cylinder pressure sensors and by controlling the fuel injection timing and the amount of EGR for optimum combustion onboard.
Technical Paper

Fuel Injection System of Air-cooled Engines for Small Displacement Motorcycles

2005-10-12
2005-32-0035
With the interest in global environmental issues growing in recent years, the demand for the reduction of exhaust gas emission and improvement in fuel consumption for small motorcycles has increased greatly. Recently, small motorcycles have been marketed equipped with an electronically controlled fuel injection system effective in reducing emissions and enhancing fuel consumption by accurately controlling the air-fuel ratio. The small motorcycles' market comprises mainly ASEAN countries, and the majority of the motorcycles consist of reasonably priced models with air-cooled engines. Fuel injection systems have already been adopted for motorcycles equipped with water-cooled engines in the markets of advanced countries, mostly in EU. Given the above situation, two issues must be addressed to adopt a successful fuel injection system for air-cooled, low-priced small motorcycles.
Technical Paper

Study of CNG Fueled Two-Wheeled Vehicle with Electronically Controlled Gas Injection System

2005-10-12
2005-32-0034
Owing to its combustion characteristics and chemical composition, natural gas features cleaner emissions and lower CO2 compared to gasoline under equal thermal efficiency. Natural gas can be a promising alternative energy source to respond to crude oil exhaustion and global warming issues. Focusing on the utility of natural gas, a feasibility study on CNG (Compressed Natural Gas) -fueled two-wheeled vehicles has been conducted. A proto-type two-wheeled vehicle was made based on a 125 cm3 class gasoline-fueled scooter. To adapt the engine to the use of CNG fuel, an electronically controlled gas injection system was applied to the fuel supply system. To provide abrasion resistance of engine valves and valve seats, the specific matter of gas-fuel was improved. Furthermore, a lubricant circulation passage was added to maintain the temperature of the pressure reducing valve.
Technical Paper

Control Device of Electronically Controlled Fuel Injection System of Air-cooled Engines for Small Motorcycles

2004-03-08
2004-01-0901
In conventional electronically controlled fuel injection systems, when the battery is inadequately charged, the small amount of electric power generated from the alternator by the kick starter operation is consumed by all electrical loads including the battery. This causes a voltage drop, hence the fuel injection system does not function due to a power shortage. To eliminate the power shortage, an installed relay circuit opens all electric loads other than the fuel injection system. This allows the fuel injection system to use all the electric power generated by the kick starter operation aided through using an additionally incorporated condenser. This type of electric power control system has been incorporated into the ECU. Thus, the control system has been realized that permits starting of an engine by using the kick-starter even when the battery is completely discharged.
Technical Paper

Development of a Hybrid System for the V6 Midsize Sedan

2005-04-11
2005-01-0274
The Accord Hybrid has been developed to offer the driving performance of a V6 midsize sedan while achieving Civic class fuel economy. The engine is based on a V6 3.0L SOHC VTEC engine, with VCM (variable cylinder management) system. The transmission is a thin 5-speed automatic transmission, modified to integrate with a hybrid system for idle stop, regeneration driving and so on. The IMA (Integrated Motor Assist) system is based on the model employed in the Civic Hybrid. During development the size of the thin DC brushless motor was increased and an IPM (Interior Permanent Magnet) rotor employed, resulting in an improvement of approximately 26% in maximum torque. Controls were developed to effectively utilize the deceleration energy regenerated by the IMA system that assist in providing expansion to the 3-cylinder operation zone, and increase the frequency of the 3-cylinder operation.
Technical Paper

Analysis on In-Cylinder Flow by Means of LDA, PIV and Numerical Simulation under Steady State Flow Condition

2008-04-14
2008-01-1063
This paper describes the evaluation of flow characteristics inside a model engine cylinder using particle image velocimetry (PIV), laser Doppler anemometry (LDA), and numerical simulation by Partial Cells in Cartesian coordinate (PCC) method. The main goal of the study is to clarify the differences in the velocity characteristics obtained by these methods. The model engine head has a four-valve system. Single- and dual- valve opening conditions of the model engine head were tested by a steady flow test rig. The flow structures were completely different for these valve opening conditions. The mean velocities and their distributions obtained by the three methods show satisfactory agreement. However, there were differences in the turbulence intensities under several conditions and measuring positions. Taylor's hypothesis in the integral length scale of turbulence was also compared with single LDA and PIV measurements.
Technical Paper

Inhibition Effect of Ethanol on Homogeneous Charge Compression Ignition of Heptane

2008-10-06
2008-01-2504
It is important in the application of bio-ethanol in homogeneous-charge compression ignition (HCCI) engines to investigate the HCCI combustion characteristics of ethanol. As the inhibitory mechanism of ethanol on HCCI combustion is a key factor, simulated chemical reactions are necessary. In this study, chemical reaction simulations in the combustion chamber of a rapid compression machine (RCM) were performed in order to investigate the inhibitory mechanism of ethanol on the HCCI combustion of heptane. The sensitivity analysis results suggested that the OH radical consumption reaction by ethanol that occurs would inhibit the cool flame reaction of heptane. Furthermore, visualization of HCCI combustion with the RCM was conducted using a quartz glass combustion chamber head and ICCD camera. As a result, the cool flame luminescence intensity of heptane was reduced by the addition of ethanol.
X