Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of Programmed-Fuel Injection for Two-Stroke Cycle Racer Engine

1991-11-01
911224
An electronically controlled fuel injection system for controlling the air/fuel (A/F) ratio has been looked forward as a means for improving drivability, output characteristics, and fuel consumption of two-stroke cycle motorcycle racer engines. However, actual installation of such a system on a high output two-stroke cycle engine (which utilizes exhaust gas pressure pulsation effects) has been considered difficult for the following reasons. Fluctuation in the delivery ratio (L) during firing and misfiring becomes great due to effects from the exhaust pipe. Applying the control method used for conventional four-stroke cycle engines (by which the delivery ratio (L) is measured) would necessitate a large and heavy system. The authors have eliminated such problems by developing an electronically controlled fuel injection system, the PGM-FI (Programmed-Fuel Injection) system, which employs basic intake air flow data according to engine speed (NE) and throttle opening (θTH).
Technical Paper

Improvement of Fuel Economy in a Four Stroke Spark Ignition Engine for a Small Motorcycle

1985-11-11
852238
For the purpose of reducing the fuel consumption of a motorcycle with a small-displacement, four-stroke spark-ignition engine, a compact combustion chamber was tried and the weight of the moving parts of the engine was reduced. As a result, the gas mileage under 30 km/h cruising condition was increased to 110 km/l with an improvement of 50% over a conventional motorcycle.
Technical Paper

Management System for Continuously Variable Valve Lift Gasoline Engine

2007-04-16
2007-01-1200
A continuously variable valve lift gasoline engine can improve fuel consumption by reducing pumping loss and increase maximum torque by optimizing valve lift and cam phase according to engine speed. In this research, a new control system to simultaneously ensure good driveability and low emissions was developed for this low fuel consumption, high power engine. New suction air management through a master-slave control made it possible to achieve low fuel consumption and good driveability. To regulate the idle speed, a new controller featuring a two-degree-of-freedom sliding-mode algorithm with cooperative control was designed. This controller can improve the stability of idle speed and achieve the idle operation with a lower engine speed. To reduce emissions during cold start condition, an ignition timing control was developed that combine I-P control with a sliding mode control algorithm.
Technical Paper

Waza (Skilled Craftsmanship) that Created RA272 Exhaust Pipe used in Formula 1 Race in 1960's

2008-04-14
2008-01-0547
This study attempted to faithfully reproduce and scientifically analyze the process of formation of the exhaust pipe of the winning RA272 engine used in Formula One in the 1960's, using the waza (skills) employed in its fashioning, which have been handed down by its makers. This analysis showed that the manual bending method, used to create the RA272 exhaust pipe, which was filled with sand and bent while being flame-heated, without the use of figures or molds, was superior to the mechanical bending method of that time, from the standpoint of short-term period of production. We have determined that the pipe displays that the microstructure of the material remains stable, even at exhaust temperatures of 700°C to 900°C, and that useful information on the pipe's shape stability and mechanical strength has been provided.
Technical Paper

A Study of High Power Output Diesel Engine with Low Peak Cylinder Pressure

2010-04-12
2010-01-1107
This study examined a high-speed, high-powered diesel engine featuring a pent-roof combustion chamber and straight ports, with the objective of improving the specific power of the engine while minimizing any increase in the maximum cylinder pressure (Pmax). The market and contemporary society expect improvements in the driving performance of diesel-powered automobiles, and increased specific power so that engine displacement can be reduced, which will lessen CO2 emissions. When specific power is increased through conventional methods accompanied with a considerable increase in Pmax, the engine weight is increased and friction worsens. Therefore, the authors examined new technologies that would allow to minimize any increase in Pmax by raising the rated speed from the 4000 rpm of the baseline engine to 5000 rpm, while maintaining the BMEP of the baseline engine.
Journal Article

Prediction of Fatigue Strength of Motorcycle Exhaust System Considering Vibrating and Thermal Stresses

2015-11-17
2015-32-0739
A method applicable in the design stage to predict fatigue strength of a motorcycle exhaust system was developed. In this prediction method, a vibrating stress, thermal stresses, stresses resulting from the assembling of the exhaust system components and a deterioration of fatigue strength of materials originated from high temperature were simultaneously taken into account. For the prediction of the vibrating stress, flexible multibody dynamics was applied to get modeling accuracy for vibration characteristics of the entire motorcycle and the exciting force delivered from engine vibrations. The thermal conduction analysis and the thermal deformation analysis based on finite element method (FEM) were applied for the prediction of thermal stresses in the exhaust system components. The temperature distribution on the surfaces of the exhaust system components is required for calculations of the thermal stresses.
Technical Paper

Prediction of Piston Skirt Scuffing via 3D Piston Motion Simulation

2016-04-05
2016-01-1044
This paper describes the establishment of a new method for predicting piston skirt scuffing in the internal combustion engine of a passenger car. The authors previously constructed and reported a method that uses 3D piston motion simulation to predict piston slap noise and piston skirt friction. However, that simulation did not have a clear index for evaluation of scuffing that involves piston skirt erosion, and it impressed shortage of the predictive accuracy of a scuffing. Therefore, the authors derived a new evaluation index for piston skirt scuffing by actually operating an internal combustion engine using multiple types of pistons to reproduce the conditions under which scuffing occurs, and comparing with the results of calculating the same conditions by piston motion simulation.
Technical Paper

Influence of Shock Absorber Friction on Vehicle Ride-Comfort Studied by Numerical Simulation Using Classical Single Wheel Model

2018-04-03
2018-01-0692
Along with the suspension improvement in these two decades, it is well known that the suspension friction force became one of major parameters to affect ride comfort performance. However, it was difficult to carry out quantitative prediction on ride comfort improvement against friction force change with high correlation. It was difficult to analyze correlation between actual vehicle performance and simulation since there were difficulties in controlling damping force and friction individually. On the other hand, magneto-rheological shock absorber (MR Shock) has had several applications and widely spread to passenger vehicles. The large variation and high response of damping force especially in slow piston speed region contributes to achieve an excellent vehicle dynamics performance. However, MR Shock shows the high friction characteristics, due to the unique sliding regime of internal parts. It is said that this high friction characteristic is causing obstacles in ride-comfort.
Technical Paper

Quantitative Analysis of Leakage Suppression of DLC Coating on Piston Ring

2017-03-28
2017-01-0457
Piston ring wear in gasoline engine induces deterioration of emissions performance due to leakage of blow-by gas, instability of idling caused by reduced compression in combustion chamber, and to generate early degeneration of engine oil. We examined anti-wear performance of DLC coating on piston ring, which had been recently reported as an effective method for improving the abrasion resistance. As a result, wear rate remained low under the condition of DLC existence on sliding surface, but once DLC was worn out completely, wear of the piston ring was accelerated and its life became shorter than piston ring without DLC. In this research, we designed reciprocating test apparatus that operates at much higher velocity range, and characterized the frictional materials of the piston ring and sleeve and the DLC as a protective film, a vapor phase epitaxy (VPE) was actively used as a means to form certain level of convex and concave shape on its surface.
Technical Paper

Non-Destructive Measurement of Residual Strain in Connecting Rods Using Neutrons

2018-04-03
2018-01-1063
Increasing the strength of materials is effective in reducing weight and boosting structural part performance, but there are cases in where the residual strain generated during the process of manufacturing of high-strength materials results in a decline of durability. It is therefore important to understand how the residual strain in a manufactured component changes due to processing conditions. In the case of a connecting rod, because the strain load on the connecting rod rib sections is high, it is necessary to clearly understand the distribution of strain in the ribs. However, because residual strain is generally measured by using X-ray diffractometers or strain gauges, measurements are limited to the surface layer of the parts. Neutron beams, however, have a higher penetration depth than X-rays, allowing for strain measurement in the bulk material.
Technical Paper

Designing for Turbine Housing Weight Reduction Using Thermal Fatigue Crack Propagation Prediction Technology

2019-04-02
2019-01-0533
Turbine housings in car engine turbochargers, which use costly stainless steel castings, account for nearly 50% of the parts cost of a turbocharger. They are also the component which controls the competitiveness of the turbocharger, in terms of both function and cost. In this research, focusing on thermal fatigue resistance which is one of the main functions demanded of a turbine housing, achieving reduction in wall thickness while securing sufficient thermal fatigue resistance, it is possible to reduce the amount of material used in the turbine housing and aimed for cost reduction. Therefore, we built a method to quantitatively predict, using 3D FEM, the lifespan from the initiation of thermal fatigue cracking to the formation of a penetrating crack which leads to gas leakage.
Technical Paper

Design of High Performance Coated GPF with 2D/3D Structure Analysis

2019-04-02
2019-01-0977
In recent years along with stringent the regulations, vehicles equipped with gasoline particulate filter (GPF) have started to launch. Compared to bare GPF, coated GPF (cGPF) requires not only PN filtration efficiency, low pressure drop, but also purification performance. In the wall flow type cGPF having a complicated the pore shape, the pore structure further irregularly changes depending on the coated state of the catalyst, so it is difficult to understand the matter of in-wall. In order to advance of cGPF function, it was researched that revealing the relevance between pore structure change in the wall and GPF function. Therefore, to understand the catalyst coated state difference, cGPF of several coating methods were prepared, and their properties were evaluated by various analyses, and performance was tested.
Technical Paper

Development of Intelligent Power Unit for 2018 Model Year Accord Hybrid

2019-04-02
2019-01-0592
A compact intelligent power unit capable of being installed under the rear seating was developed for the 2018 model year Accord Hybrid that is to be equipped with the SPORT HYBRID Intelligent Multi Mode Drive (i-MMD) system. The space under the rear seat features multiple constraints on dimensions. In the longitudinal direction, it is necessary to attempt to help ensure occupant leg room and to position the fuel tank; in the vertical direction, it is necessary to attempt to help ensure occupants comfort and a minimum ground clearance; and in the lateral direction, it is necessary to avoid the position of the body side frames and the penetrating section of the exhaust pipe. The technologies described below were applied in order to reduce the size of components, making it possible to position the IPU amid these constraint conditions.
Journal Article

Ag-Type PM Oxidation Catalyst with Nd Added to Increase Contact Property between PM and Catalyst

2018-04-03
2018-01-0328
Honda diesel engine vehicles that go on the market in 2018 will be equipped with a newly developed silver (Ag)-type catalyzed diesel particulate filter (cDPF). Ag has high particulate matter (PM) oxidation performance, but conventional catalyst-carrying methods cause weak contact property between PM and Ag; therefore, the newly Ag-type cDPF was developed on the concept of enhancing the property of contact between PM and the catalyst to realize contact property enhancement at the macro, meso, and nano scales. As a result, the newly developed catalyst showed an enhancement of T90 performance by a factor of approximately 2 relative to the conventional Ag-type catalyst in fresh condition. Durability in the environment of an automobile in use was examined through hydrothermal aging, lean-rich (L/R) aging, sulfur (S) poisoning, and ash deposition. The results have confirmed that hydrothermal aging is the greatest factor in deterioration.
Technical Paper

Application of Image Converter Camera to Measure Flame Propagation in S.I. Engine

1989-02-01
890322
A combustion flame visualization system, for use as an engine diagnostics tool, was developed in order to evaluate combustion chamber shapes in the development stage of mass-produced spark ignition (S.I.) engines. The system consists of an image converter camera and a computer-aided image processing system. The system is capable of high speed photography (10,000 fps) at low intensity light (1,000 cd/m2), and of real-time display of the raw images of combustion flames. By using this system, flame structure estimated from the brightness level on a photograph and direction of flame propagation in a mass-produced 4-valve engine were measured. It was observed that the difference in the structure and the propagation of the flame in the cases of 4-valve and quasi-2-valve combustion chambers, which had the same in the pressure diagram, were detected. The quasi-2-valve configuration was adopted in order to improve swirl intensity.
Technical Paper

The Properties of Hybrid Fiber Reinforced Metal and It's Application for Engine Block

1989-02-01
890557
The weight-saving requirements for automobiles are important. In order to produce a lighter engine, an aluminum block with cast-iron liners and a hypereutectic aluminum-silicon alloy block have been developed. (1)*, (2), (3), (4), (5), (6) We developed a new aluminum engine block which has the cylinder bore surface structure reinforced with short ceramic fiber. We also established technology suitable for mass-production including a fiber preform process and a non-destructive inspection method. In this paper, the optimum properties and production technology of MMC engine blocks are introduced. A portion of the paper is dedicated to the results of a comparison study between a new light-weight aluminum engine block, a hypereutectic aluminum-silicon engine block and an aluminum engine block with cast-iron liners.
Technical Paper

Study on Ignition Timing Control for Diesel Engines Using In-Cylinder Pressure Sensor

2006-04-03
2006-01-0180
As technologies for simultaneously maintaining the current high thermal efficiency of diesel engines and reducing particulate matter (PM) and nitrogen oxide (NOX) emissions, many new combustion concepts have been proposed, including premixed charge compression ignition (PCCI) and low-temperature combustion[1]. However, it is well known that since such new combustion techniques precisely control combustion temperatures and local air-fuel ratios by varying the amount of air, the exhaust gas recirculation (EGR) ratio and the fuel injection timing, they have the issues of being less stable than conventional combustion techniques and of performance that is subject to variance in the fuel and driving conditions. This study concerns a system that addresses these issues by detecting the ignition timing with in-cylinder pressure sensors and by controlling the fuel injection timing and the amount of EGR for optimum combustion onboard.
Technical Paper

Development of High-strength Piston Material with High Pressure Die Casting

2006-04-03
2006-01-0986
The technology for a new, high-strength piston material has been developed by using high pressure die casting (HPDC) method, which had a rapid rate of solidification. This method allowed the amount of Ni added to be increased to 5.5 mass%, raising the fatigue strength of the new material at temperatures of 523 K or higher by a factor of 1.5 over that of a conventional material made by gravity die casting (GDC). In addition, application of vacuum to the die cavity and using additional pressure enabled quality exceeding that of conventional GDC pistons. Pistons made from the newly developed material decreased engine friction by 4.4% and increased fuel efficiency by 2.2% in engine bench testing.
Technical Paper

Development of the Variable Valve Timing and Lift (VTEC) Engine for the Honda NSX

1991-01-01
910008
The Honda variable valve timing and lift electronic control system (VTEC) is incorporated in the engine of the NSX sports car that is scheduled for sales in Europe this year. In the process of advancement of Honda's engine technology, VTEC was developed for much higher output and higher efficiency. This is actually the first system in the world that can simultaneously switch the timing and lift of the intake and exhaust valves. This system has made improvements in maximum output at high rpm, and also improved the low rpm range, such as idling stability and starting capability.
Technical Paper

A New Variable Valve Engine Applying Shuttle Cam Mechanism

1992-02-01
920450
Variable-valve-actuation mechanism is considered to be one of the most suitable solutions to realize the compatibility between higher power output and performances in the practical speed range. A new variable-valve-actuation mechanism named “Shuttle Cam” was designed and studied. In this mechanism which was applied to a conventional motorcycle engine with rocker arms and gear-train-driven valve system, the cam gears move along the idler gear. And cam shafts simultaneously slide along the rocker-arm slipper surfaces which are concentric with the idler gear. Consequently valve lift varies continuously in accordance with the alteration in the rocker-arm lever ratio and the cam phasing changes simultaneously in accordance with the cam gear rotation. Result of the experiments has confirmed that the mechanism functions accurately even at high speeds up to 10,000 rpm and some improvements were achieved in power output, fuel consumption, idling quality, and exhaust-noise level.
X