Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Establishment of Engine Lubrication Oil Pressure and Flow Rate Distribution Prediction Technology Using 3D-CFD and Multi Body Dynamics

2009-04-20
2009-01-1349
To develop ideal oil circuits, it was necessary to establish technology that would accurately predict lubrication oil pressure and flow rates. Therefore, the oil flow rate was predicted by applying load fluctuations, calculated using multi body dynamics, to an oil film model. In addition, the pressure loss of complex oil passages was obtained using 3-dimensional computational fluid dynamics (hereafter, “3D-CFD”). Furthermore, the pressure loss of the oil pressure switching valves and other parts that are difficult to predict using 3D-CFD were measured as single parts, and these results were linked with one-dimensional internal flow analysis to develop a prediction method for lubrication oil pressure and flow rate distributions. Verification tests were ultimately performed using a completed engine, and the results confirmed that this simulation method accurately reproduces the oil pressure and oil flow rate in each part.
Technical Paper

Introduction of a New Method of Solving Wear Problems Caused by the Swing Motion Occurring between the Roller and the Sliding Contact Surface

2010-04-12
2010-01-1055
In an attempt to decrease the amount of CO2 emitted by engines and yet improve engine output power, various approaches to the development of variable valve-lift mechanisms and the application of direct fuel injection and supercharger mechanisms are rapidly gaining popularity. In the case of the swing motion which takes place in variable valve-lift mechanisms, the relative speed between the two components reaches zero at the location where the load is high and the oil film tends to break, thereby leading to wear. Furthermore, the use of a supercharger and a direct injection device generates soot, which promotes further wear. Therefore establishing a reliable method for estimating wear has become a pressing issue. Wear problems caused by the swing motion occur during boundary lubrication, and we have devised a solution for them.
Journal Article

Study of the Mechanism of Accessory Drive Belt Noise

2009-04-20
2009-01-0186
The mechanism of noise production in engine accessory drive belts was discussed. Applying geometric considerations to the transversal vibration of the belt, which is one cause of belt noise, the research showed that vibration of the belt is affected by fluctuations in the rotational speed of the crankshaft, and that the amplitude of the vibrations fluctuates cyclically. The cycle of this amplitude fluctuation is synchronous with engine speed, and for a 3-cylinder gasoline engine, its frequency is the (1.5*n)th engine rotation order. The spectrum pattern of belt vibration therefore shows components of the natural frequency±(1.5*n)th orders. The research demonstrated that at engine speeds at which the natural frequency±(1.5*n)th orders and the (1.5*n)th order frequencies, the engine excitation orders, are identical, multiple engine orders excite resonance in the belt, producing a high degree of belt vibration.
X