Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Management System for Continuously Variable Valve Lift Gasoline Engine

2007-04-16
2007-01-1200
A continuously variable valve lift gasoline engine can improve fuel consumption by reducing pumping loss and increase maximum torque by optimizing valve lift and cam phase according to engine speed. In this research, a new control system to simultaneously ensure good driveability and low emissions was developed for this low fuel consumption, high power engine. New suction air management through a master-slave control made it possible to achieve low fuel consumption and good driveability. To regulate the idle speed, a new controller featuring a two-degree-of-freedom sliding-mode algorithm with cooperative control was designed. This controller can improve the stability of idle speed and achieve the idle operation with a lower engine speed. To reduce emissions during cold start condition, an ignition timing control was developed that combine I-P control with a sliding mode control algorithm.
Technical Paper

Rapid Engine Speed Control for AMT Using Two-Degree-of-Freedom Sliding Mode Algorithm

2005-04-11
2005-01-1592
An accurate and rapid engine speed control has been required to improve the shift quality of automated manual transmissions. However, conventional controls could not provide sufficient controllability. They caused the overshoot and steady-state error of engine speed from target values. Therefore, a two-degree-of-freedom sliding mode algorithm was newly designed and applied to the engine speed control. This algorithm can independently assign the disturbance suppression characteristic and tracking performance, and has excellent robustness against the changes in engine dynamics. As a result, the overshoot and steady-state error were prevented under all engine conditions.
Technical Paper

New Concept Sliding Mode Control for AMT

2005-04-11
2005-01-1594
The sliding mode algorithm is used for air fuel ratio control, device control, and other systems because of its high responsiveness and robustness. A special feature is that the disturbance suppression characteristic can be set as needed by changing the gradient of the switching line. However, there has been no research into applying this feature. Taking note of the fact that a servo system with a high compliance can be established by lowering the disturbance suppression characteristic, this algorithm was applied to gearing control in automated manual transmissions. During gear changes, automated manual transmissions require the positioning control of a shift rod, the contact control of a sleeve and synchronizer ring, and revolution synchronizing control of the main shaft and counter-shaft by pressing in the sleeve.
Technical Paper

Secondary O2 Feedback Using Prediction and Identification Type Sliding Mode Control

2000-03-06
2000-01-0936
Recently, much research has been carried out on secondary O2 feedback which performs control based on the output from a secondary O2 sensor (HEGO sensor). In this research it has been found that, regardless of catalyst aging conditions, the HEGO sensor output indicates 0.6 V when the catalyst reduction rate is maintained at the optimum level. Therefore, based on this relationship, we designed an accurate secondary O2 feedback with the aim of reducing emissions by stabilizing the HEGO sensor output to 0.6 V. In order to realize this control, it was necessary to solve the three problems of nonlinear catalyst characteristics, dead time characteristics, and changes in dynamic characteristics due to catalyst aging conditions. Therefore, these problems were solved using the modeling approach of robust control and a new robust adaptive control named Prediction and Identification Type Sliding Mode Control.
Technical Paper

A Quick Warm-Up System During Engine Start-Up Period Using Adaptive Control of Intake Air and Ignition Timing

2000-03-06
2000-01-0551
Early activation of catalyst by quickly raising the temperature of the catalyst is effective in reducing exhaust gas during cold starts. One such technique of early activation of the catalyst by raising the exhaust temperature through substantial retardation of the ignition timing is well known. The present research focuses on the realization of quick warm-up of the catalyst by using a method in which the engine is fed with a large volume of air by feedforward control and the engine speed is controlled by retarding the ignition timing. In addition, an intake air flow control method that comprises a flow rate correction using an adaptive sliding mode controller and learning of flow rate correction coefficient has been devised to prevent control degradation because of variation in the flow rate or aging of the air device. The paper describes the methods and techniques involed in the implementation of a quick warm-up system with improved adaptability.
X