Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Study of PGM-Free Oxidation Catalyst YMnO3 for Diesel Exhaust Aftertreatment

Manganese oxides show high catalytic activity for CO and HC oxidation without including platinum group metals (PGM). However, there are issues with both thermal stability and resistance to sulfur poisoning. We have studied perovskite-type YMnO₃ (YMO) with the aim of simultaneously achieving both activity and durability. This paper describes the oxidation activity of PGM-free Ag/i-YMO, which is silver supported on improved-YMO (i-YMO). The Ag/i-YMO was obtained by the following two methods. First, Mn⁴+ ratio and specific surface area of YMO were increased by optimizing composition and preparation method. Second, the optimum amount of silver was supported on i-YMO. In model gas tests and engine bench tests, the Ag/i-YMO catalyst showed the same level of activity as that of the conventional Pt/γ-Al₂O₃ (Pt = 3.0 g/L). In addition, there was no degradation with respect to either heat treatment (700°C, 90 h, air) or sulfur treatment (600°C to 200°C, total 60 h, 30 ppm SO₂).
Technical Paper

Improvement of Thermal Resistance for Lean NOx Catalyst

A new type of lean NOx catalyst has been developed with improved thermal resistance. This lean NOx catalyst contains precious metals and NO2 adsorbents. The precious metals are used mainly for the oxidation reaction of NO, and the NO2 adsorbents are for the adsorption removal of generated NO2. The thermal resistance of the catalyst was raised by paying attention to the following points. 1) Improvement of thermal resistance for the NO oxidation activity by addition of a different precious metal element. 2) Prevention of thermal degradation of the NO2 adsorbent by addition of a new metal oxide. For item 1, Pd was added to the catalyst which had already included Pt. By having Pd coexist with Pt, the precious metal dispersion was kept high even after heat treatment, so the NO oxidizing ability was improved. For item 2, thermal degradation of NO2 adsorbent was prevented by addition of the new metal oxide (B) to the adsorbent.