Refine Your Search

Topic

Author

Search Results

Journal Article

Ag-Type PM Oxidation Catalyst with Nd Added to Increase Contact Property between PM and Catalyst

2018-04-03
2018-01-0328
Honda diesel engine vehicles that go on the market in 2018 will be equipped with a newly developed silver (Ag)-type catalyzed diesel particulate filter (cDPF). Ag has high particulate matter (PM) oxidation performance, but conventional catalyst-carrying methods cause weak contact property between PM and Ag; therefore, the newly Ag-type cDPF was developed on the concept of enhancing the property of contact between PM and the catalyst to realize contact property enhancement at the macro, meso, and nano scales. As a result, the newly developed catalyst showed an enhancement of T90 performance by a factor of approximately 2 relative to the conventional Ag-type catalyst in fresh condition. Durability in the environment of an automobile in use was examined through hydrothermal aging, lean-rich (L/R) aging, sulfur (S) poisoning, and ash deposition. The results have confirmed that hydrothermal aging is the greatest factor in deterioration.
Journal Article

NOx Trap Three-Way Catalyst (N-TWC) Concept: TWC with NOx Adsorption Properties at Low Temperatures for Cold-Start Emission Control

2015-04-14
2015-01-1002
A new concept for trapping NOx and HC during cold start, the NOx Trap Three-Way Catalyst (N-TWC), is proposed. N-TWC adsorbs NOx at room temperature, and upon reaching activation temperature under suitable air-fuel ratio conditions, it reduces the adsorbed NOx. This allows a reduction in NOx emissions during cold start. N-TWC's reduction mechanism relies on NOx adsorption sites which are shown to be highly dispersed palladium on acid sites in the zeolite. Testing on an actual vehicle equipped with N-TWC confirmed that N-TWC is able to reduce emissions of NOx and HC during cold start, which is a challenge for conventional TWCs.
Technical Paper

Total Phosphorus Detection and Mapping in Catalytic Converters

2007-10-29
2007-01-4078
The poisoning of three way catalysts (TWC) by the phosphorus contained in oil formulations containing zinc dialkyldithiophosphate (ZDDP) is examined. Catalysts were exposed to various types of ZDDP and detergents under conditions that were known to reduce performance through phosphorus poisoning without the blocking of sites by formation of glazing. The presence of phosphorus was detected with energy dispersive x-ray spectroscopy (EDX). In addition to analyzing the surface concentration of the phosphorus on the washcoat, the catalyst was cross cut so phosphorus that diffused into the washcoat could be mapped. The total phosphorus in the catalyst could then be calculated. The amount of total phosphorus detected correlated well with the reduced activity of the catalyst as measured by the temperature of 50% conversion.
Technical Paper

Study on Emission Reducing Method with New Lean NOX Catalyst for Diesel Engines

2007-07-23
2007-01-1933
In recent years, emission regulations have become more stringent as a result of increased environmental awareness in each region of the world. For diesel engines, reducing NOX emissions is a difficult technical challenge.[1],[2],[3],[4]. To respond to these strict regulations, an exhaust gas aftertreatment system was developed, featuring a lean NOX catalyst (LNC) that uses a new chemical reaction mechanism to reduce NOX. The feature of the new LNC is the way it reduces NOX through an NH3-selective catalytic reduction (SCR), in which NOX adsorbed in the lean mixture condition is converted to NH3 in the rich mixture condition and reduced in the following lean mixture condition. Thus, the new system allows the effective reduction of NOX. However, in order to realize cleaner emission gases, precise engine control in response to the state of the exhaust aftertreatment system is essential.
Technical Paper

Study on Low NOX Emission Control Using Newly Developed Lean NOX Catalyst for Diesel Engines

2007-04-16
2007-01-0239
In recent years, emission regulations have become more stringent as a result of increased environmental awareness in each region of the world. For lean-burn diesel engines, since it is not possible to use three-way catalytic converters, reducing NOX emissions is a difficult technical challenge. To respond to these strict regulations, an exhaust gas aftertreatment system was developed, featuring a lean NOX catalyst (LNC) that uses a new chemical reaction mechanism to reduce NOX. The feature of the new LNC is the way it reduces NOX through an NH3-selective catalytic reduction (SCR), in which NOX adsorbed in the lean mixture condition is converted to NH3 in the rich mixture condition and reduced in the following lean mixture condition. Thus, the new system allows more efficient reduction of NOX than its conventional counterparts. However, an appropriate switching control between lean and rich mixture conditions along with compensation for catalyst deterioration was necessary.
Technical Paper

Performance of Motorcycle Engine Oil with Sulfur-Based Additive as Substitute Zn-DTP

2008-09-09
2008-32-0005
Just as CO2 reduction is required of four wheeled vehicles for environmental protection, similar environmental concerns drive the development of motorcycle oil technology. Zinc dialkyldithiophosphate (Zn-DTP) type additives are widely used for engine oil formulations. However, phosphorus compounds are environmental load materials. The reduction of the quantity of phosphorus compounds in engine oils is required to reduce poisoning of three-way catalysts used to purify exhaust gases from internal combustion engines. Mr. Ito and his co-authors1) reported that they developed a sulfur-based additive as a substitute for Zn-DTP. Their non-phosphorus engine oil formulation for four-wheeled vehicles with a sulfur-based additive was examined to evaluate its anti-wear performance using the following test methods:JASO M328 for gasoline engines (KA24E) and JASO M354 for Diesel engine (4D34T4).
Technical Paper

Intake and Exhaust Systems Equipped with a Variable Valve Control Device for Enhancing of Engine Power

2001-03-05
2001-01-0247
The variable intake and exhaust control valve system for the in-line four-cylinder motorcycle engine was developed for realization of high engine power in all the engine speed ranges. Both the variable intake and exhaust control valves are operated by one servomotor. For high engine speeds, the exhaust collector pipe design for merging of each exhaust gas flow at 180 degrees phase difference is used. For mid engine speeds, the design for merging of each exhaust gas flow at 360 degrees phase difference is used. Two modes are provided to the intake control, and three modes are provided to the exhaust control. Along with exhaust-gas treatment systems such as the catalyst and air-injection system, high engine performance with optimum driveability and reduced emission are realized.
Technical Paper

Improvement of Heat Resistance for Lean NOx Catalyst

2004-03-08
2004-01-1495
When the alkali metal-supported catalyst was treated at 830°C, the NOx conversion decreased because the alkali metals in the catalyst layer gradually moved to the cordierite honeycomb layer and reacted with the cordierite elements. This phenomena decreased to be added the basic metal oxide (α) in the catalyst layer. The improved catalyst with α 2 showed higher performance than the conventional catalyst in the model gas test. Moreover, the emission values of NOx, HC, and CO were 50% or less than Japanese domestic regulation values even after 830°C×60h heat treatment in a vehicle test.
Technical Paper

Improvement of Thermal Resistance for Lean NOx Catalyst

2003-03-03
2003-01-1166
A new type of lean NOx catalyst has been developed with improved thermal resistance. This lean NOx catalyst contains precious metals and NO2 adsorbents. The precious metals are used mainly for the oxidation reaction of NO, and the NO2 adsorbents are for the adsorption removal of generated NO2. The thermal resistance of the catalyst was raised by paying attention to the following points. 1) Improvement of thermal resistance for the NO oxidation activity by addition of a different precious metal element. 2) Prevention of thermal degradation of the NO2 adsorbent by addition of a new metal oxide. For item 1, Pd was added to the catalyst which had already included Pt. By having Pd coexist with Pt, the precious metal dispersion was kept high even after heat treatment, so the NO oxidizing ability was improved. For item 2, thermal degradation of NO2 adsorbent was prevented by addition of the new metal oxide (B) to the adsorbent.
Technical Paper

On Demand Octane Number Enhancement Technology by Aerobic Oxidation

2016-10-17
2016-01-2167
For the purpose of developing onboard gasoline reforming technology for higher octane number fuel on demand, octane number enhancement of gasoline surrogate by aerobic oxidation using N-hydroxyphthalimide catalyst was investigated. At first, octane numbers of the oxygen-containing products from alkane and aromatic compound were estimated using a fuel ignition analyzer. As a result, not only alcohol but also ketones and aldehydes have higher octane numbers than the original alkanes and aromatic compound. Next, gasoline surrogate was oxidized aerobically with N-hydroxyphthalimide derivative catalyst and cobalt catalyst at conditions below 100 °C. As a result, fuel molecules were oxidized to produce alcohols, ketones, aldehydes, and carboxylic acids. N-hydroxyphthalimide derivative catalyst with higher solubility in gasoline surrogate has higher oxidation ability. Furthermore, the estimated octane number of the oxidized gasoline surrogate improves 17 RON.
Technical Paper

Study of an Aftertreatment System for HLSI Lean-burn Engine

2018-04-03
2018-01-0945
Lean-burn is an effective means of reducing CO2 emissions. To date, Homogenous Lean Charge Spark Ignition (HLSI) combustion, which lowers emissions of both CO2 and NOx, has been studied. Although HLSI realizes lower emission, it is a major challenge for lean-burn engines to meet SULEV regulations, so we have developed a new aftertreatment system for HLSI engines. It consists of three types of catalysts that have different functions, as well as special engine control methods. As the first stage in achieving SULEV emissions, this study focused on enhancing performance under lean conditions. HLSI engine exhaust gases contain high concentrations of hydrocarbons, including a large amount of paraffin, which are difficult to purify, rather than low concentrations of NOx. Therefore, the key point in low emissions is to purify not only NOx, but also high concentrations of paraffin at the same time.
Technical Paper

A Study of PGM-Free Oxidation Catalyst YMnO3 for Diesel Exhaust Aftertreatment

2012-04-16
2012-01-0365
Manganese oxides show high catalytic activity for CO and HC oxidation without including platinum group metals (PGM). However, there are issues with both thermal stability and resistance to sulfur poisoning. We have studied perovskite-type YMnO₃ (YMO) with the aim of simultaneously achieving both activity and durability. This paper describes the oxidation activity of PGM-free Ag/i-YMO, which is silver supported on improved-YMO (i-YMO). The Ag/i-YMO was obtained by the following two methods. First, Mn⁴+ ratio and specific surface area of YMO were increased by optimizing composition and preparation method. Second, the optimum amount of silver was supported on i-YMO. In model gas tests and engine bench tests, the Ag/i-YMO catalyst showed the same level of activity as that of the conventional Pt/γ-Al₂O₃ (Pt = 3.0 g/L). In addition, there was no degradation with respect to either heat treatment (700°C, 90 h, air) or sulfur treatment (600°C to 200°C, total 60 h, 30 ppm SO₂).
Technical Paper

Development of Extruded Electrically Heated Catalyst System for ULEV Standards

1997-02-24
971031
Into the early-part of the next century, automotive emission standards are becoming stricter around the world. The electrically-heated catalyst (EHC) is well known as an effective technology for the reduction of cold-start hydrocarbon emissions without a significant increase in back pressure. Our extruded, alternator powered EHC (APEHC) manufactured with a unique canning method and equipped with a reliable, water proof electrode has demonstrated excellent durability and reliability, as stated in our previous SAE paper (#960340). The APEHC system discussed in this paper has achieved the Ultra-Low-Emission Vehicle (ULEV) standards, after 100,000 miles of fleet testing, without any failure. This is the final milestone in addressing the EHC as a realistic-production technology for ULEV. With the ability to meet ULEV/Stage III emission targets without a significant increase in back pressure, the EHC will be applied to an especially high performance vehicle with a large displacement engine.
Technical Paper

Development of Highly Efficient Lean NOx Catalyst System in Low Exhaust Gas Temperature

2013-04-08
2013-01-0536
The reduction of NOx in exhaust gas has been a major challenge in diesel engine development. For the NOx reduction issues, a new Lean NOx Catalyst (LNC) aftertreatment system has been developed by Honda. A feature of the LNC system is the method that is used to reduce NOx through an NH₃-Selective Catalytic Reduction (NH₃-SCR). In an LNC system NOx is adsorbed at lean conditions, then converted to NH₃ at rich conditions and subsequently reduced in the next lean phase. In recent years, as the efficiency of the diesel engine has improved, the exhaust gas temperatures have been reduced gradually. Therefore, the aftertreatment system needs to be able to purify NOx at lower temperatures. The development of a new LNC which has a high activity at low temperature has been carried out. For the improvement of the LNC three material improvements were developed. The first of these was the development of a NOx adsorbent which is matching the targeted exhaust gas temperatures.
Technical Paper

Research into New Emission Control Techniques for Motorcycles to Achieve the EURO-3 Regulation

2004-09-27
2004-32-0032
This emission reduction technique has been researched on motorcycles equipped with a four-cylinder, liquid-cooled engine of 1100cm3 displacement in order to comply with the EURO-3 emission regulation. The EURO-3 emission regulation will be enforced in Europe beginning in year 2006. Compared to the EURO-2 regulation, reduction of cold-start HC and reduction of NOx from the extra-urban driving cycle are the main issues for EURO-3 compliance. The hydrocarbon reduction during cold-starting was achieved by the method of early catalyst activation using a combination of an Idle Air Control Valve system (IACV), ignition-retard, and atomization of fuel spray. In the extra-urban driving cycle, the fine controlled air-fuel ratio reduced. In addition, optimization of the number of three-way catalyst cells and their capacity also reduced NOx. Moreover, power loss decline caused by increased exhaust resistance due to increasing the catalyst size was avoided by optimizing the catalyst location.
Technical Paper

Development of the High-Power, Low-Emission Engine for the “Honda S2000”

2000-03-06
2000-01-0670
The two liter DOHC-VTEC engine developed for the Honda S2000 produces 179kW (240HP, which is 120HP per liter). It is the highest output power among all naturally aspirated two liter engines ever mass-produced. It also achieves an exhaust emission level within National LEV standards. The new engine utilizes a redesigned VTEC cylinder head, in which MIM (metal injection molding) rocker arms are used. The new cylinder block with a ladder frame structure for its lower part, a newly developed camshaft drive chain and gear system and a metal honeycomb catalyst with an air pump start-up system are also utilized.
Technical Paper

Secondary O2 Feedback Using Prediction and Identification Type Sliding Mode Control

2000-03-06
2000-01-0936
Recently, much research has been carried out on secondary O2 feedback which performs control based on the output from a secondary O2 sensor (HEGO sensor). In this research it has been found that, regardless of catalyst aging conditions, the HEGO sensor output indicates 0.6 V when the catalyst reduction rate is maintained at the optimum level. Therefore, based on this relationship, we designed an accurate secondary O2 feedback with the aim of reducing emissions by stabilizing the HEGO sensor output to 0.6 V. In order to realize this control, it was necessary to solve the three problems of nonlinear catalyst characteristics, dead time characteristics, and changes in dynamic characteristics due to catalyst aging conditions. Therefore, these problems were solved using the modeling approach of robust control and a new robust adaptive control named Prediction and Identification Type Sliding Mode Control.
Technical Paper

NOx Conversion Properties of a Mixed Oxide Type Lean NOx Catalyst

2000-03-06
2000-01-1197
Development is proceeding on catalysts which separate the NOx in lean exhaust gas by adsorption and then reduce the adsorbed NOx in combustion exhaust gas with the stoichiometric or a slightly richer air fuel ratio, as well as exhaust conversion technology that uses these catalysts. Amidst this research it has been found that catalysts containing mixed metal oxides exhibit superior NOx adsorption performance, so the authors prepared a mixed metal oxide catalyst by adding precious metals and promoters, etc. The resulting catalyst has high heat resistance and also offers excellent SOx durability. These properties were presumed to be due to an adsorbent including the mixed metal oxide, and the relation between the physical properties and NOx conversion properties of the catalyst was investigated.
Technical Paper

Analysis of the Pressure Drop Increase Mechanism by Ash Accumulated of Coated GPF

2019-04-02
2019-01-0981
With accelerating exhaust gas regulations in recent years, not only CO / HC / NOx but also PN regulation represented by Euro 6 d, China 6 are getting stricter. PN reduction by engine combustion technology development also progresses, but considering RDE, PN reduction by after treatment technology is also indispensable. To reduce PN exhausted from the gasoline engine, it is effective to equip GPF with a filter structure. Considering the installation of GPF in limited space, we developed a system that so far replaces the second TWC with GPF for the TWC 2 bed system. In order to replace the second TWC with GPF, we chose the coated GPF with filtering and TWC functions. Since the initial pressure drop and the catalyst amount (purification performance) of coated GPF have a conflicting relationship, we developed the coated GPF that can achieve both the low initial pressure drop and high purification performance.
Technical Paper

Design of High Performance Coated GPF with 2D/3D Structure Analysis

2019-04-02
2019-01-0977
In recent years along with stringent the regulations, vehicles equipped with gasoline particulate filter (GPF) have started to launch. Compared to bare GPF, coated GPF (cGPF) requires not only PN filtration efficiency, low pressure drop, but also purification performance. In the wall flow type cGPF having a complicated the pore shape, the pore structure further irregularly changes depending on the coated state of the catalyst, so it is difficult to understand the matter of in-wall. In order to advance of cGPF function, it was researched that revealing the relevance between pore structure change in the wall and GPF function. Therefore, to understand the catalyst coated state difference, cGPF of several coating methods were prepared, and their properties were evaluated by various analyses, and performance was tested.
X