Refine Your Search




Search Results


The Future (& Past) of Electrified Vehicles

The presentation offers a brief history of the electric vehicle and parallels the realities of those early vehicles with the challenges and solutions of the electrified vehicles coming to market today. A technology evolution for every major component of these vehicles has now made this mode of transportation viable. The Focus Electric is Ford's first electric passenger car utilizing the advanced technology developments to meet the needs of electric car buyers in this emerging market. Presenter Charles Gray, Ford Motor Co.

Real-time Tire Imbalance Detection Using ABS Wheel Speed Sensors

This presentation proposes an approach to use ABS wheel speed sensor signals together with other vehicle state information from a brake control module to detect an unbalanced tire or tires in real-time. The proposed approach consists of two-stage algorithms that mix a qualitative method using band-pass filtering with a quantitative parameter identification using conditional least squares. This two-stage approach can improve the robustness of tire imbalance or imbalances. The proposed approach is verified through vehicle testing and the test results show the effectiveness of the approach. Presenter Jianbo Lu, Ford Motor Co.

OBD Experiences: A Ford Perspective

Some the OBD-II regulations have been around for a long time or seem to be intuitively obvious. It is easy to assume to assume that everyone knows how to implement them correctly, that is, until someone actually reads the words and tries to do it. Most often, these issues come up when modifying existing OBD features, not when creating completely new ones. This presentation contains a few examples of features that should have been easy to implement, but turned out not to be easy or simple. Presenter Paul Algis Baltusis, Ford Motor Co.

Ford: Driving Electric Car Efficiency

The Focus Electric is Ford�s first full-featured 5 passenger battery electric vehicle. The engineering team set our sights on achieving best-in-class function and efficiency and was successful with an EPA certified 1XX MPGe and range XXX then the facing competition allowing for a slightly lower capacity battery pack and larger vehicle without customer trade-off. We briefly overview the engineering method and technologies employed to deliver the results as well as sharing some of the functional challenges unique to this type of vehicle. Presenter Charles Gray, Ford Motor Co.

Hybrid Vehicle Battery OBD: Why, Wherefore, and How

The introduction of hybrid and plug-in hybrid electric vehicles has resulted in the introduction of battery systems into the realm of OBD II diagnostics. After a high-level overview of battery systems, general battery system fault responses are discussed, as well as which of these might be OBD faults. The alignment of the OBD regulations and DTC assignment in systems with large numbers of similar/identical components is discussed, along with apparent conflicts between existing OBD regulations and the physical realities of battery systems in HEVs and PHEVs. Presenter Dyche Anderson, Ford Motor Co.
Technical Paper

Management System for Continuously Variable Valve Lift Gasoline Engine

A continuously variable valve lift gasoline engine can improve fuel consumption by reducing pumping loss and increase maximum torque by optimizing valve lift and cam phase according to engine speed. In this research, a new control system to simultaneously ensure good driveability and low emissions was developed for this low fuel consumption, high power engine. New suction air management through a master-slave control made it possible to achieve low fuel consumption and good driveability. To regulate the idle speed, a new controller featuring a two-degree-of-freedom sliding-mode algorithm with cooperative control was designed. This controller can improve the stability of idle speed and achieve the idle operation with a lower engine speed. To reduce emissions during cold start condition, an ignition timing control was developed that combine I-P control with a sliding mode control algorithm.
Technical Paper

Liquid Phase Thermometry of Common Rail Diesel Sprays Impinging on a Heated Wall

An experimental study was carried out on visualization of liquid phase temperature distributions in high-pressure diesel sprays impinging on a heated wall. Naphthalene/TMPD-exciplex fluorescence method and pyrene-excimer fluorescence method were utilized for the thermometry. The sprays were injected into a high-pressure and high-temperature gaseous environment. The nozzle hole diameter was 0.100 mm or 0.139 mm. The results showed that cool pockets were formed at the tip and in the impinging part of the sprays. The spray for the nozzle with 0.100 mm hole was heated up faster near the nozzle than for the nozzle with 0.139 mm hole.
Technical Paper

NVH Design and Development of the Duratec35 Engine from Ford Motor Company

Ford Motor Company has developed a new 3.5L V6 engine. The engine, called the Duratec35, represents a new architecture for Ford Motor Co. that will eventually power one in five Ford vehicles. The goals of the engine design were high output, fuel efficient, low emissions, and excellent NVH. This paper will describe the NVH process for the development of the engine, the NVH features included in the design, and the final results relative to the benchmarks.
Technical Paper

Analytical and Experimental Techniques in Solving the Plastic Intake Manifold NVH

The intent of this paper is to summarize the work of the V8 power plant intake manifold radiated noise study. In a particular V8 engine application, customer satisfaction feedback provided observations of existing unpleasant noise at the driver's ear. A comprehensive analysis of customer data indicated that a range from 500 to 800 Hz suggests a potential improvement in noise reduction at the driver's ear. In this study the noise source was determined using various accelerometers located throughout the valley of the engine and intake manifold. The overall surface velocity of the engine valley was ranked with respect to the overall surface velocity of the intake manifold. An intensity mapping technique was also used to determine the major component noise contribution. In order to validate the experimental findings, a series of analysis was also conducted. The analysis model included not only the plastic intake manifold, but also the whole powertrain.
Technical Paper

Dimethoxy Methane in Diesel Fuel: Part 1. The Effect of Fuels and Engine Operating Modes on Emissions of Toxic Air Pollutants and Gas/Solid Phase PAH

The objective of this study was to quantify engine-out emissions of potentially toxic compounds from a modern diesel engine operated with different fuels including 15% v/v dimethoxy methane in a low sulfur diesel fuel. Five diesel fuels were examined: a low-sulfur, low-aromatic hydrocracked (∼1 ppm) fuel, the same low sulfur fuel containing 15% v/v dimethoxy methane, a Fischer-Tropsch fuel, a CARB fuel, and an EPA number 2 certification fuel. A DaimlerChrysler OM611 CIDI engine was controlled with a SwRI Rapid Prototyping Electronic Control system. The engine was operated over 4 speed-load modes. Each operating mode and fuel combination was run in triplicate. Thirty three potentially toxic compounds were measured for each fuel and mode.
Technical Paper

Dimethoxy Methane in Diesel Fuel: Part 3. The Effect of Pilot Injection, Fuels and Engine Operating Modes on Emissions of Toxic Air Pollutants and Gas/Solid Phase PAH

The objective of this study was to quantify the effect of pilot fuel injection on engine-out emissions of potentially toxic compounds from a modern diesel engine operated with different fuels including 15% v/v dimethoxy methane in a low-sulfur diesel fuel. Five diesel fuels were examined: a low-sulfur (∼1 ppm), low aromatic, hydrocracked fuel, the same low-sulfur fuel containing 15% v/v dimethoxy methane, a Fischer-Tropsch fuel, a California reformulated fuel, and a EPA number 2 certification fuel. A DaimlerChrysler OM611 CIDI engine was controlled with a SwRI Rapid Prototyping Electronic Control system. The pilot fuel injection was either turned off or turned on with engine control by either Location of Peak Pressure (LPP) of combustion or the original equipment manufacturer (OEM) calibration strategy. These three control strategies were compared over 2 speed-load modes run in triplicate. Thirty-three potentially toxic compounds were measured.
Technical Paper

Impact of Engine Operating Conditions on Low-NOx Emissions in a Light-Duty CIDI Engine Using Advanced Fuels

The control of NOx emissions is the greatest technical challenge in meeting future emission regulations for diesel engines. In this work, a modal analysis was performed for developing an engine control strategy to take advantage of fuel properties to minimize engine-out NOx emissions. This work focused on the use of EGR to reduce NOx while counteracting anticipated PM increases by using oxygenated fuels. A DaimlerChrysler OM611 CIDI engine for light-duty vehicles was controlled with a SwRI Rapid Prototyping Electronic Control System. Engine mapping consisted of sweeping parameters of greatest NOx impact, starting with OEM injection timing (including pilot injection) and EGR. The engine control strategy consisted of increased EGR and simultaneous modulation of both main and pilot injection timing to minimize NOx and PM emission indexes with constraints based on the impact of the modulation on BSFC, Smoke, Boost and BSHC.
Technical Paper

Improvement of visibility for vulnerable parties in traffic accidents

More than half of fatalities in traffic accidents in Japan are the vulnerable parties in such accidents (pedestrians, motorcycles, bicycles). In most of these accidents, the cause is collision involving automobiles. Therefore, reasoning that early detection of such vulnerable parties would lead to a reduction in accidents, we conducted research on the following three systems: - Honda Night Vision System - For night-time detection of pedestrians using infrared cameras. - Active Headlights - For assuring night-time field of vision by directing illumination in the direction of vehicle travel through lights coupled with steering wheel turn and so on. - Inter-Vehicle Motorcycle-Automobile Communication System (IVCS) - Notifies drivers of each other's presence by providing information through communications systems installed on both vehicles. The results from research on these systems show that their use can be expected to have a positive effect in reducing the occurrence of accidents.
Technical Paper

Robust Embedded Software Begins With High-Quality Requirements

In an effort to improve the quality of software and take advantage of Lessons Learned, Ford Motor Company has created a generic list of software requirements to help prevent software design errors, mistakes and faults from being delivered to our customer in our vehicles. Ford's intent of publishing these requirements is to provide a basis for an SAE Recommended Practice. Ford's goal is to encourage the software community to participate in the development of a recommended practice that can benefit all software developers. These particular requirements were developed for Automotive Body Features.
Technical Paper

Understanding the Interaction Between Passive Four Wheel Drive and Stability Control Systems

The purpose of this paper is to describe and define the interaction between a brake based stability control system and a passive coupler (viscous coupling unit) inside the transfer case of a Four-Wheel Drive (4WD) vehicle. This paper will focus on the driveline system and the impact that a stability control system can have on it. It will provide understanding of torque transfer on 4WD vehicles that are equipped with a brake based stability control system and use this knowledge to recommend ways to reduce the undesirable torque transfer interaction between the two systems. These recommendations can be readily applied to future 4WD/AWD vehicles to improve compatibility between the two systems.
Technical Paper

49 Development of Pb-free Free-Cutting Steel Enabling Omission of Normalizing for Crankshafts

Crankshafts of motorcycles require high strength, high reliability and low manufacturing cost. Recently, a reduction of Pb content in the free-cutting steel, which is harmful substance, is required. In order to satisfy such requirements, we started the development of Pb-free free-cutting steel which simultaneously enabled the omission of the normalizing process. For the omission of normalizing process, we adjusted the content of Carbon, Manganese and Nitrogen of the steel. This developed steel can obtain adequate hardness and fine microstructure by air-cooling after forging. Pb-free free-cutting steel was developed based on Calcium-sulfur free-cutting steel. Pb free-cutting steel is excellent in cutting chips frangibility in lathe process. We thought that it was necessary that cutting chips frangibility of developed steel was equal to Pb free-cutting steel. It was found that cutting chips frangibility depend on a non-metallic inclusion's composition, shape and dispersion.
Technical Paper

The New 1.0l Supercharger Zetec RoCam Engine

The current Brazilian tax legislation promotes vehicles, powered by engines with up to 1.0l displacement. In order to offer the customer an engine with the maximum tax advantage, a supercharged derivative of the Ford 1.0l Zetec RoCam engine was developed. The market specific boundary conditions in South America require powertrains with immediate response especially at low engine speeds. This can be achieved by a supercharged engine concept. The paper discusses the required engine modifications for the supercharger application. The combustion system was changed to benefit from the higher volumetric efficiency, including the optimisation of the intake, exhaust and bypass control system. Extensive modifications of the base engine were required to adapt the engine to the higher thermal load and the specific boundary condition of a supercharger application.
Technical Paper

Identification of the Optimum Vehicle Class for the Application of 42v Integrated Starter Generator

Today nearly all automotive manufacturers are developing motor-generator systems for improved fuel economy by implementing idling-stop and other power train enhancements. It is said that powertrain technology has always pioneered the development of automotive electronic control throughout history. The integrated starter generator (ISG) promises to expand the scope of powertrain control further through fuel economy improvement, emissions reduction, longitudinal vehicle dynamics improvement and customer feature enhancements. At the present time the cost imposed by usage of an ISG system is very high due mainly to its need for a power optimized 42V battery and high power electronics. This paper takes a critical look at the vehicle benefits attributable to ISG and its implementation costs over various vehicle classes.