Refine Your Search




Search Results


A Study of PGM-Free Oxidation Catalyst YMnO3 for Diesel Exhaust Aftertreatment

Manganese oxides show high catalytic activity for CO and HC oxidation without including platinum group metals (PGM). However, there are issues with both thermal stability and resistance to sulfur poisoning. We have studied perovskite-type YMnO3 (YMO) with the aim of simultaneously achieving both activity and durability. This paper describes the oxidation activity of PGM-free Ag/i-YMO, which is silver supported on improved-YMO (i-YMO). The Ag/i-YMO was obtained by the following two methods. First, Mn4+ ratio and specific surface area of YMO were increased by optimizing composition and preparation method. Second, the optimum amount of silver was supported on i-YMO. In model gas tests and engine bench tests, the Ag/i-YMO catalyst showed the same level of activity as that of the conventional Pt/?-Al2O3 (Pt = 3.0 g/L). In addition, there was no degradation with respect to either heat treatment (700°C, 90 h, air) or sulfur treatment (600°C to 200°C, total 60 h, 30 ppm SO2).
Technical Paper

Management System for Continuously Variable Valve Lift Gasoline Engine

A continuously variable valve lift gasoline engine can improve fuel consumption by reducing pumping loss and increase maximum torque by optimizing valve lift and cam phase according to engine speed. In this research, a new control system to simultaneously ensure good driveability and low emissions was developed for this low fuel consumption, high power engine. New suction air management through a master-slave control made it possible to achieve low fuel consumption and good driveability. To regulate the idle speed, a new controller featuring a two-degree-of-freedom sliding-mode algorithm with cooperative control was designed. This controller can improve the stability of idle speed and achieve the idle operation with a lower engine speed. To reduce emissions during cold start condition, an ignition timing control was developed that combine I-P control with a sliding mode control algorithm.
Technical Paper

Toyota AA80E 8-Speed Automatic Transmission with Novel Powertrain Control System

Toyota has developed the world's first 8-speed automatic transmission (AA80E) for RWD automobiles. The transmission will first be used in the all-new Lexus LS460. In addition, a novel control system has been developed to maximize the predictability, response, efficiency, and initial quality of the powertrain while utilizing the high number of gear steps.
Technical Paper

Large Eddy Simulation of Spray Injection to Turbulent Duct Flow from a Slit Injector

The behavior of spray injections to turbulent duct flows from a slit injector for direct-injection gasoline engines was investigated using a combination of large eddy simulation (LES) and Lagrangian discrete droplet model (DDM). As a result, diffusion of droplets in stronger turbulent flows was observed at a later stage of the injection. Moreover, we compared calculation and experimental results by generating a pseudo-particle image from the calculation result.
Technical Paper

Liquid Phase Thermometry of Common Rail Diesel Sprays Impinging on a Heated Wall

An experimental study was carried out on visualization of liquid phase temperature distributions in high-pressure diesel sprays impinging on a heated wall. Naphthalene/TMPD-exciplex fluorescence method and pyrene-excimer fluorescence method were utilized for the thermometry. The sprays were injected into a high-pressure and high-temperature gaseous environment. The nozzle hole diameter was 0.100 mm or 0.139 mm. The results showed that cool pockets were formed at the tip and in the impinging part of the sprays. The spray for the nozzle with 0.100 mm hole was heated up faster near the nozzle than for the nozzle with 0.139 mm hole.
Technical Paper

Study on Emission Reducing Method with New Lean NOX Catalyst for Diesel Engines

In recent years, emission regulations have become more stringent as a result of increased environmental awareness in each region of the world. For diesel engines, reducing NOX emissions is a difficult technical challenge.[1],[2],[3],[4]. To respond to these strict regulations, an exhaust gas aftertreatment system was developed, featuring a lean NOX catalyst (LNC) that uses a new chemical reaction mechanism to reduce NOX. The feature of the new LNC is the way it reduces NOX through an NH3-selective catalytic reduction (SCR), in which NOX adsorbed in the lean mixture condition is converted to NH3 in the rich mixture condition and reduced in the following lean mixture condition. Thus, the new system allows the effective reduction of NOX. However, in order to realize cleaner emission gases, precise engine control in response to the state of the exhaust aftertreatment system is essential.
Technical Paper

Piston Temperature Measuring Technology Using Electromagnetic Induction

Authors have developed an apparatus which measures the piston temperature using electromagnetic induction. The characteristics of this apparatus are as follows; 1 Applicable to 6 points per cylinder and all cylinders 2 Capable of measuring while the engine is running from start to 6000r/min full-load operation 3 Wide measuring range; from -30 to 400 °C 4 High accuracy; ±2.5 °C 5 Quick and easy setup 6 High durability This technology contributes to realizing the best balance of piston reliability and matching of combustion conditions. In this report, authors analyzed its influences upon piston temperature when the ignition timing,the oil/water temperature or the oil flow from piston jet were changed, respectively.
Technical Paper

Modeling and Numerical Analysis of NOx Storage-Reduction Catalysts - On the Two Effects of Rich-Spike Duration

Two effects of rich-spike duration on NOx-storing have been analyzed. The first one, that NOx-storing speed decreases as rich-spike duration increases, is explained as the influence of NOx diffusion in wash-coat layer, which is quantified by a simple mathematical expression for NOx-storing rate. The second one, a peculiar behavior of NOx-storing in appearance of the outlet NOx concentration, is clarified: Heat produced directly or indirectly (via oxygen storage in ceria) by rich-spike warms up the downstream part, which releases excess NOx at the raised temperature. Contributions of the oxygen storage and the carbonate of NOx-storage material are also discussed.
Technical Paper

Plate Type Methanol Steam Reformer Using New Catalytic Combustion for a Fuel Cell

Methanol steam reforming, which is an endothermic reaction, needs some heating. Both methanol conversion ratio and carbon monoxide (CO) concentration increase when temperature is elevated. As CO poisons a typical polymer electrolyte of a fuel cell, the relationship between methanol conversion ratio and CO concentration is a trade-off one. It was found from preliminary researches that the reforming reaction speed is controlled by heat transfer rate at large methanol flow rate, where methanol conversion ratio becomes lower and CO concentration becomes higher. Therefore it is necessary to develop a new methanol reforming concept that provides stable combustion for heating and enhanced heat transfer for improving the trade-off relationship and making a compact reformer. Reforming catalyst using metal honeycomb support and a new catalytic combustion were applied to a new concept plate type methanol steam reformer, which is used in a fuel cell of 3 kW-class electric generation.
Technical Paper

Study on HCCI-SI Combustion Using Fuels Ethanol Containing

Bio-ethanol is one of the candidates for automotive alternative fuels. For reduction of carbon dioxide emissions, it is important to investigate its optimum combustion procedure. This study has explored effect of ethanol fuels on HCCI-SI hybrid combustion using dual fuel injection (DFI). Steady and transient characteristics of the HCCI-SI hybrid combustion were evaluated using a single cylinder engine and a four-cylinder engine equipped with two port injectors and a direct injector. The experimental results indicated that DFI has the potential for optimizing ignition timing of HCCI combustion and for suppressing knock in SI combustion under fixed compression ratio. The HCCI-SI hybrid combustion using DFI achieved increasing efficiency compared to conventional SI combustion.
Technical Paper

HILS Application for Hybrid System Development

The hybrid system has the typical advantage that it can realize various types of system control, because the system has two power units, engine and motor. On the other hand, however, constraints are increasing due to the complexity of the vehicle system. Compared to the conventional HILS construction and application, there are mainly two typical characteristics or themes for HV-HILS (i.e. HILS for hybrid vehicle control development). Firstly, HV-HILS requires full vehicle simulation environment, because the plural ECU control logic is intricately intertwined. Secondly, recent HILS system needs to run with more accurate or complicated plant models which are necessary to develop more accurate vehicle control logic.
Technical Paper

Improvement of visibility for vulnerable parties in traffic accidents

More than half of fatalities in traffic accidents in Japan are the vulnerable parties in such accidents (pedestrians, motorcycles, bicycles). In most of these accidents, the cause is collision involving automobiles. Therefore, reasoning that early detection of such vulnerable parties would lead to a reduction in accidents, we conducted research on the following three systems: - Honda Night Vision System - For night-time detection of pedestrians using infrared cameras. - Active Headlights - For assuring night-time field of vision by directing illumination in the direction of vehicle travel through lights coupled with steering wheel turn and so on. - Inter-Vehicle Motorcycle-Automobile Communication System (IVCS) - Notifies drivers of each other's presence by providing information through communications systems installed on both vehicles. The results from research on these systems show that their use can be expected to have a positive effect in reducing the occurrence of accidents.
Technical Paper

Automatic Transmission Control System Developed for Toyota Mild Hybrid System (THS-M)

Environmental improvement is moving forward, due in part to the reduction of fuel consumption of automatic transmission(AT) vehicles as a result of social requirements in recent years and many measures have been implemented. Adoption of idling stop is a typical example introduced to reduce energy consumption while the vehicle is stopped to improve the urban environment. However, there are problems such as responsiveness and smoothness for an AT vehicle when the engine is stopped with the shift selector in “D” range. To overcome these problems, a new start clutch control system has been developed using an electric oil pump installed in a simple hybrid vehicle called a mild hybrid. As a result, a smooth feeling starting performance is achieved by operating the system in combination with the engine and other systems.
Technical Paper

A New Battery System for the Estima Hybrid Minivan

Development of a new battery system for Toyota Estima Hybrid, the world's first minivan hybrid vehicle, has been completed. The battery pack that consists of 30 nickel metal hydride battery modules is compactly arranged under the 3rd seat in the cabin along with components such as the battery cooling blower and the ducts. This arrangement was designed in consideration of user's vehicle use, passengers' comfort and efficient battery-cooling performance.
Technical Paper

49 Development of Pb-free Free-Cutting Steel Enabling Omission of Normalizing for Crankshafts

Crankshafts of motorcycles require high strength, high reliability and low manufacturing cost. Recently, a reduction of Pb content in the free-cutting steel, which is harmful substance, is required. In order to satisfy such requirements, we started the development of Pb-free free-cutting steel which simultaneously enabled the omission of the normalizing process. For the omission of normalizing process, we adjusted the content of Carbon, Manganese and Nitrogen of the steel. This developed steel can obtain adequate hardness and fine microstructure by air-cooling after forging. Pb-free free-cutting steel was developed based on Calcium-sulfur free-cutting steel. Pb free-cutting steel is excellent in cutting chips frangibility in lathe process. We thought that it was necessary that cutting chips frangibility of developed steel was equal to Pb free-cutting steel. It was found that cutting chips frangibility depend on a non-metallic inclusion's composition, shape and dispersion.
Technical Paper

Diagnostics Trends for Automotive Electronic Systems

This paper is a study of the On-Board Diagnosis (OBD), a constituent element of the automotive electronic diagnosis system, together with its support functions. With regard to the OBD, we have listed and explained the principles of various diagnostic methods and their advantages and disadvantages. In addition, we have also commented on design factors and concepts. As to the support functions, nameiy diagnostics communication and diagnostic scan tool, drive recorder, and also IT, we have made recommendations on their future development in view of the functional division of roles with respect to the OBD in light of their respective characteristics.
Technical Paper

Fuel Effects on Particulate Emissions from D.I. Engines - Precise Analyses and Evaluation of Diesel Fuel

Precise analytical methods for characterizing diesel fuel yielding the lowest particulate emissions were developed. The methods consist of preparative-scale high pressure liquid chromatography (HPLC), field ionization mass spectrometry (FIMS), analytical-scale HPLC, and carbon-13 nuclear magnetic resonance spectrometry (13C-NMR). A diesel fuel was first separated into an aliphatic fraction and an aromatic fraction by semipreparative-scale HPLC. Then, the aliphatic fraction was analyzed by FIMS and the spectrum was compared with that of the whole fuel. The aromatic fraction was analyzed by analytical-scale HPLC to obtain the chromatogram of the aromatic hydrocarbons with a high S/N. In addition to these analyses, the fuel was analyzed by 13C-NMR to obtain the concentration of the carbon atoms of the straight chain, branched chain and aromatic-ring in hydrocarbons.
Technical Paper

Development of the Motor-Assist System for the Hybrid Automobile--The Insight Development of the Motor-Assist System for a Hybrid Car--Insight

A motor-assist system has been developed and employed for the "Insight' hybrid car. The system consists of an internal combustion engine as the primary power source, with an electric motor placed around the engine's crankshaft. Such construction reduces the system's volume significantly and offers more flexibility for the power plant layout. The system's functions include regeneration during braking, an idle stop mechanism, driving power assistance, and power supply for the 12V electrical system. A proper energy management method for various driving modes has been established by combining these functions, and fuel economy is significantly improved as a result. As another control feature, an active motor vibration control system compensates the idling vibration that is unique to three-cylinder engines.
Technical Paper

Development of Planar Oxygen Sensor

In preparation for compliance with California's SULEV standard and Euro STAGE 4 standard, which will take effect in 2002 and 2005, respectively, we have developed a laminated planar oxygen sensor. The developed sensor has the following characteristics: high thermal conductivity and superior dielectric characteristic, due to direct joining of the heater element alumina substrate and the sensor element zirconia electrolyte; low heat stress at temperature rise, due to optimized heater design; superior sensor protection from water droplets, and improved sensor response, due to optimized arrangement of intake holes in the sensor cover. With these characteristics, the developed oxygen sensor can be activated in 10 seconds after cold start. This report describes the technologies we used to develop the early-activation oxygen sensor.
Technical Paper

On-board Diagnostic Expert System via an Enhanced Fault Tree Model

We propose to enhance reliability based diagnosis by enhancing the fault tree model with a sensor layer for capturing evidence. We recognized the need for an automated diagnostic process that can predict and report component failure in vehicles prior to total failure of any system in the vehicle. We also want to take advantage of evidence that can be derived from sensors to reduce the amount of tests required to identify failed components.