Refine Your Search


Search Results

Technical Paper

Three-way catalysts for partial lean-burn engine vehicle

Emission of carbon dioxide from mobile sources seriously concerned to solve greenhouse effect and high price of gasoline in some countries have resulted in the development of lean-burn concept engine. In spite of many studies on the lean deNOx catalyst, we have no clear solution to obtain high fuel economy and high efficiency of NOx conversion in lean-burn application. This paper describes applicability and problems of NOx adsorber system to partial lean-burn vehicle, the development of three-way catalyst with improvement of washcoat technology based on three-way catalyst used for gasoline application, and comparison test results of evaluations is synthesized gas activity test, Federal Test Procedure (FTP) test, etc. This study shows improved three-way catalysts in partial lean- burn vehicle have max. 89% of NOx conversion in FTP without adding rich spike and regeneration functions to engine management system.
Technical Paper

The Design and Development of the Hyundai Alpha Engine

Main design features and some of the development work carried out on the first new engines to be produced in-house by Hyundai Motor Co. are described. The Alpha family of multi-valve, four cylinder engines comprises 1.3 and 1.5L naturally aspirated units and a 1.5L turbocharged version. Modern features are incorporated in the engines in order to provide higher performance and good fuel economy with excellent durability at reasonable cost. Hyundai Motor Co. (HMC) was established in 1967 and, in the following year, commenced production of passenger cars for the domestic market, using CKD components supplied by Ford of Europe. In 1974 the Pony saloon car entered production; this used mainly locally produced components but most of the major items, including the power train - engine and gearbox - were manufactured under the license from Mitsubishi Motors.
Technical Paper

MEMS Sensor for Particulate Matter Measurement of Exhaust Gas

To meet Euro6 regulation particulate matter MEMS sensor is suggested. This sensor detects induced charges by PM. To increase sensitivity of the sensor, surface area of the sensor is increased by MEMS process. Sensor is made by low resistive silicon. Total size is 4.3 mm x 59.4 mm x 1 mm and size of sensor part is 4.3 mm x 13 mm. On the backside of the sensor, Pt heater is fabricated to remove piled PM on sensor part. After sensor part, charge amplifier is used to measure the induced charge of the sensor. From FFT of sensor signal, it can sense 5.46 mg/m₃ of PM. In this paper, MEMS devices for exhaust system monitoring of automobiles are investigated. PM emitted from diesel engine is charged particle. Charge-induced-type PM sensor we designed can measure by real time and it doesn't need particle collection apparatus
Journal Article

Recent Advances in the Development of Hyundai · Kia's Fuel Cell Electric Vehicles

Wide attention to fuel cell electric vehicles (FCEVs) comes from two huge issues currently the world is facing with: the concern of the petroleum reserves depletion due to consequent oil dependence and the earth global warming due in some extent to vehicle emissions. In this background, Hyundai, along with its sister company Kia, has been building the FCEVs and operating their test fleet with several tens of units at home and abroad. Since 2004, 32 passenger vehicles have been offered for the Department of Energy's controlled hydrogen fleet and infrastructure demonstration and validation project in the U.S. In the meantime, from 2006, 30 passenger vehicles as well as four buses, featuring the in-house developed fuel cell stack and its associated components, are currently under the domestic operation for the FCEV learning demonstration led by the Ministry of Knowledge and Economy.
Technical Paper

An Experimental Comparison Between Air-Assisted Injection System and High Pressure Injection System at 2-Stroke Engine

This study presents engine test results of HMC's piston-ported 2-stroke gasoline engine. This single cylinder engine of 400cc displacement has featured in direct injection(DI) of fuel and external blower scavenging of air. Two different concepts of DI system were adopted, one is high pressure fuel injection(HPFI) system for solid fuel only and the other is low pressure air-assisted fuel injection(AAFI) system. Two kinds of engines with different scavenging intake port shapes and areas were tested to find the effect of scavenging port type on engine performance. Also tested were trends of BSFC, BSHC and BSCO versus fuel injection timing and engine speed with HPFI and AAFI, respectively. Power and boost pressure at full load and BSFC and BSHC at part load were tested.
Technical Paper

Development of 4-Cylinder 2.0L Gasoline Engine Cooling System Using 3-D CAE

To satisfy the global fuel economy restrictions getting stricter, various advanced cooling concepts, like active flow control strategy, cross-flow and fast warm-up, have been applied to the engine. Recently developed Hyundai’s next generation 4-cylinder 2.0L gasoline engine, also adopts several new cooling subsystems. This paper reviews how 3-D CAE analysis has been extensively used to evaluate cooling performance effectively from concept phase to pre-production phase. In the concept stage, the coolant flow in the water jacket of cylinder head and block was investigated to find out the best one among the proposed concepts and the further improvement of flow was also done by optimizing cylinder head gasket holes. Next, 3-D temperature simulation was conducted to satisfy the development criteria in the prototype stage before making initial test engines.
Technical Paper

Synergies of Cooled External EGR, Water Injection, Miller Valve Events and Cylinder Deactivation for the Improvement of Fuel Economy on a Turbocharged-GDI Engine; Part 2, Engine Testing

As CO2 legislation tightens, the next generation of turbocharged gasoline engines must meet stricter emissions targets combined with increased fuel efficiency standards. Recent studies have shown that the following technologies offer significant improvements to the efficiency of turbocharged GDI engines: Miller Cycle via late intake valve closing (LIVC), low pressure loop cooled EGR (LPL EGR), port water injection (PWI), and cylinder deactivation (CDA). While these efficiency-improving technologies are individually well-understood, in this study we directly compare these technologies to each other on the same engine at a range of operating conditions and over a range of compression ratios (CR). The technologies tested are applied to a boosted and direct injected (DI) gasoline engine and evaluated both individually and combined.
Technical Paper

Synergies of Cooled External EGR, Water Injection, Miller Valve Events and Cylinder Deactivation for the Improvement of Fuel Economy on a Turbocharged-GDI Engine; Part 1, Engine Simulation

As CO2 legislation tightens, the next generation of turbocharged gasoline engines must meet stricter emissions targets combined with increased fuel efficiency standards. Promising technologies under consideration are: Miller Cycle via late intake valve closing (LIVC), low pressure loop cooled exhaust gas recirculation (LPL EGR), port water injection (PWI), and cylinder deactivation (CDA). While these efficiency improving options are well-understood individually, in this study we directly compare them to each other on the same engine at a range of operating conditions and over a range of compression ratios (CR). For this purpose we undertake a comprehensive simulation of the above technology options using a GT-Power model of the engine with a kinetics based knock combustion sub-model to optimize the fuel efficiency, taking into account the total in-cylinder dilution effects, due to internal and external EGR, on the combustion.
Technical Paper

Development of Adaptive Powertrain Control Utilizing ADAS and GPS

This paper introduces the advancement of Engine Idle Stop-and-Go (ISG, also known as Auto Engine Stop-Start) and Neutral Coasting Control (NCC) with utilizing Advanced Driver Assistance System (ADAS) and GPS. The ISG and the In-Neutral Coasting (also known as Sailing or Gliding) have been widely implemented in recent vehicles for improving their fuel economy. However, many drivers find them somewhat disturbing because they basically change behaviors of their cars from what they used to. This annoyance discourages usages of those functions and eventually undermines their benefit of fuel saving. In order to mitigate the problem, new ISG and NCC algorithms are proposed. As opposed to the conventional logics that rely only on driver’s pedal action, the new algorithms determine whether or not to enable those functions for the given driving condition, based on the traffic information obtained using ADAS sensors and the location data from GPS and navigation map.
Technical Paper

Development of Exhaust System for Post-SULEV

A new exhaust system has been developed to cope with post-SULEV (Super Ultra-Low Emissions Vehicle) regulation by newly designed hardware of exhaust system. This paper will describe the various new technologies used for achieving the post-SULEV standards, such as Conicat (cone-type metal catalyst), dual-wall pipe, pipe-type metal catalyst, ultra thin wall monolith and HC trap system for the improvement of catalyst light-off time. The tested data on 2.0L SULEV vehicle indicate that Conicat(cone-type metal catalyst) and HC trap (hydrocarbon absorbing catalyst) have more positive characteristics, and are expected to show the enhanced HC reduction performance with the optimization of emission system.
Technical Paper

Research and Development of Hyundai Flexible Fuel Vehicles (FFVs)

This paper describes Hyundai's research and development work on a flexible fuel vehicle (FFV). The work on FFV has been conducted to evaluate its potential as an alternative to the conventional gasoline vehicle. Hyundai FFV described here can operate on M85, gasoline, or any of their combinations, in which the methanol concentration is measured by an electrostatic type fuel sensor. For that operation, a special FFV ECU has been developed and incorporated in the FFV. The characteristics affecting FFV operation, such as FFV ECU control strategy and injector flow rate, have been investigated and optimized by experiment. Various development tests have been performed in view of engine performance, durability, cold startability, and exhaust emissions reduction. The exhaust gas aftertreatment system being consisted of manifold type catalytic converter(MCC) and secondary air injection system has shown good emission reduction performance including formaldehyde emission.
Technical Paper

Flame Propagation and Knock Detection Using an Optical Fiber Technique in a Spark-Ignition Engine

In this research, an optical system for the detection of the flame propagation under the non-knocking and knocking conditions is developed and applied to a mass produced four cylinder SI engine. The normal flames are measured and analyzed under the steady state operating conditions at various engine speeds. For knocking cycles, the flame front propagations before and after knock occurrence are simultaneously taken with cylinder pressure data. In non-knocking and knocking cycles, flame propagation shows cycle-by-cycle variations, which are quite severe especially in the knocking cycles. The normal flame propagations are analyzed at various engine speeds, and show that the flame front on the exhaust valve side becomes faster as the engine speed increases. According to the statistical analysis, knock occurence location and flame propagation process after knock can be categorized into five different types.
Technical Paper

Performance and Exhaust Emissions of Hyundai Flexible Fuel Vehicle (FFV)

Recently, flexible fuel vehicle (FFV) has been drawn great attention because of its response for immediate use as alternative fueled one. Hyundai FFV can be operated on arbitrary fuel mixtures between gasoline and M85 with the specially programmed electronic control unit (ECU) which can determine optimized fueling quantity and ignition timing as the methanol content by the signal from electrostatic type fuel sensor. In this paper, the results of various tests including engine performance, cold startability, durability and exhaust emission reduction have been described. Full load, cold mode durability tests and field trials have been carried out with some material changes and surface treatments in the lubricating parts and fuel system. But, more work on its durability improvement is still required.
Technical Paper

Application of a Wide Range Oxygen Sensor for the Misfire Detection

A new concept of misfire detection in spark ignition engines using a wide-range oxygen sensor is introduced. A wide-range oxygen sensor, installed at the confluence point of the exhaust manifold, was adopted to measure the variation in oxygen concentration in case of a misfire. The signals of the wide-range oxygen sensor were characterized over the various engine-operating conditions in order to decide the monitoring parameters for the detection of the misfire and the corresponding faulty cylinder. The effect of the sensor position, the transient response characteristics of the sensor and the cyclic variation in the signal fluctuation were also investigated. Limited response time of a commercially available sensor barely allowed to observe misfire. It was found that a misfiring could be distinguished more clearly from normal combustion through the differentiation of the sensor response signal. The differentiated signal has twin peaks for a single misfiring in a cylinder.
Technical Paper

Development of DC Motor Driven 3 Way Valve for FCEV

Fuel cell vehicle is loaded with translating equipment, which converts chemical energy to electrical energy. The equipment has maximum power efficiency at a specific temperature when several operating conditions are met. To control the coolant temperature, the existing system uses a wax-type thermostat, which operates as the wax elements contracts and expands. However, there are several problems with the wax-type thermostat; it is impossible to measure real-time temperature and high pressure drop. To mitigate these problems, we developed a DC motor-driven 3-way valve that can control real-time temperature and low pressure drop. Application of the 3-way valve will improve fuel cell vehicle power and fuel efficiency.
Technical Paper

Flow Analysis and Catalytic Characteristics for the Various Catalyst Cell Shapes

The shape of unit cell of catalytic converter has great influence on the conversion efficiency and pressure drop characteristics. Therefore, the properties of design parameters of catalyst monolith were analyzed and the parameters of various cell shapes of catalyst were compared. Also, the numerical study of a three dimensional compressible flow in a Close-coupled Catalyst Converter (CCC) system was performed to investigate the flow characteristics and the flow distribution of exhaust gases. Unsteady flow analysis shows that severe interferences of each pulsating exhaust gas flow as well as geometric factors (junction, mixing pipe, cell shape etc.) influence greatly on the flow uniformity and flow characteristic in substrate. The results can be applied for the catalytic converter design.
Technical Paper

Improvement of Manufacturing and Evaluation Technology for the Light Weight Brake Disc Composed of Hybrid Type Material

Reducing unsprung mass of the car is a representative method to enhance the ride & handling performance and fuel efficiency. In this study, brake disc weight is reduced 15∼20% using a hybrid type material. The basis for this study is the separation of the friction surface and HAT(mounting part). Aluminum material is applied in the HAT for a light weight effect. Gray iron is applied in the friction surface section to maintain braking performance. Two types of joining between aluminum and cast iron are developed. One is the aluminum casting method utilizing a gray iron insert and the other is a bolted assembly method. Detailed structure, process and material are optimized using try-out & dynamometer experiments. The Reliability of this development is proved through durability (dynamometer and vehicle) testing.
Technical Paper

Development of Composite Body Panels for a Lightweight Vehicle

Recently weight reduction is increasingly needed in automotive industry to improve fuel efficiency and to meet a CO2 emission requirement. In this paper, we prepared composite body panels for the lightweight vehicle based on a small passenger car. Fender, roof, door, side outer panel, and tailgate are made from hand layup using a glass/carbon hybrid reinforcement. Hood is made from low pressure sheet molding compound (SMC) to investigate feasibility of mass production. Both hand layup and low pressure SMC materials are newly developed and their physical properties are examined. CAE simulation was done for strength analysis and optimization of thickness for the body panels.
Technical Paper

Thermal Load in a Heavy Duty Diesel Engine with EUI System

High pressure fuel injection systems, such as common rail (CR) systems and electronically-controlled unit injector (EUI) systems, have been widely applied to modern heavy duty diesel engines. They are shown to be very effective for achieving high power density with high fuel efficiency and low exhaust gas emissions. However, the increased peak combustion pressure gives additional structural stress and thermal load to engine structure. Thus, proper material selection and thermal analysis of engine components are essential in order to meet the durability requirements of heavy-duty diesel engines adopting a high pressure injection system. In this paper, thermal analysis of a 12.9 ℓ diesel engine with an EUI system was studied. Temperatures were measured on a cylinder head, a piston and a cylinder liner. A specially designed linkage system was used to measure the piston temperatures. A radio-tracer technique was also used to verify the rotation of piston rings.
Technical Paper

Optimization of the Packing Design for Manifold Catalytic Converter Application

A preconverter is an essential component of the new vehicle exhaust system for the achievement of tightened emission standards. To meet those standards, the Manifold Catalytic Converter (MCC) system has been developed in the Hyundai Motor Company (HMC). Unfortunately, the conventional MCC is no longer a suitable design for the exhaust gas treatment of the newly developed high performance engine since it cannot withstand the engine's exhaust temperature, vibration, pressure pulsation, and many other severe conditions. This paper is focused on a failure-mode analysis and new packing designs for the MCC application through a series of durability tests.