Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The Effect Of Intake System Geometry On The Sensitivity Of Hot Film Type Air Flow Meter

2003-05-19
2003-01-1802
The air fuel ratio of current gasoline engine is mostly controlled by various air flow meters. When CVVT (Continuous Variable Valve Timing) device is applied to gasoline engine for higher engine performance, MAP (Manifold Absolute Pressure) sensor can not be applied anymore due to intake valve motion. Therefore HFM (Hot film airflow meter) is used for measuring the intake air flow instead of MAP sensor. Usually HFM has a little sensitivity in flow direction, therefore reverse flow from engine to air cleaner can not be measured. Also, HFM maker request enough straight duct length nearly 10 times of a duct diameter making a fully developed flow. But, most vehicles have no enough space to install such an intake system in engine room. Thus the inserted duct was applied to confirm the stable fully developed flow in air duct. The various duct configurations in front of HFM effect on the sensitivity of HFM.
Technical Paper

Theoretical and Experimental Flow Analysis of Exhaust Manifolds for PZEV

2007-08-05
2007-01-3444
As the current and future emission regulations become stringent, the research on exhaust manifold with CCC (Close Coupled Catalyst) has been the interesting and remarkable subject. To design of exhaust manifold with CCC is a difficult task due to the complexity of the flow distribution caused by the pulsating flows that are emitted at the exhaust ports. This study is concerned with the theoretical and experimental approach to improve catalyst flow uniformity through the basic understanding of exhaust flow characteristics. Computational and experimental approach to the flow for exhaust manifold of conventional cast type, stainless steel bending type with 900 cell CCC system in a 4-cylinder gasoline engine was performed to investigate the flow distribution of exhaust gases.
Technical Paper

A Study of Flow Characteristics Inside the Two Types of Exhaust Manifold and CCC Systems

1999-03-01
1999-01-0457
A study of unsteady compressible flow for two types of exhaust manifold and CCC (Close-Coupled Catalyst) systems attached to a 4-cylinder DOHC gasoline engine was carried out to investigate the flow distribution of exhaust gases and finally to make the conversion efficiency of catalyst better. An experimental study was conducted, using LDV technique, to measure the velocity distributions inside exhaust manifolds and CCC under practical engine conditions. In this study, through experiment and calculation, the effects of geometric configuration of exhaust manifold on flow maldistribution in monolith were mainly investigated to understand the exhaust flow structure in terms of flow uniformity and to improve the conversion efficiency. As a result of this fundamental study, the modified exhaust manifold (Type B) was designed and manufactured. Full load performance tests and vehicle emission tests were performed to see the effects of flow characteristics on engine performance and emission.
X