Refine Your Search

Topic

Author

Search Results

Technical Paper

Investigation of Gap Deflector Efficiency for Reduction of Sunroof Buffeting

2009-05-19
2009-01-2233
The efficiency of a gap-type of deflector for suppressing vehicle sunroof buffeting is studied in this work. Buffeting is an unpleasant low frequency booming caused by flow-excited Helmholtz resonance of the interior cabin. Accurate prediction of this phenomenon requires accounting for the bi-directional coupling between the transient shear layer aerodynamics (vortex shedding) and the acoustic response of the cabin. Numerical simulations were performed using a CFD/CAA numerical method based on the Lattice Boltzmann Method (LBM). The well established LBM approach provides the time-dependent solution to the compressible Navier-Stokes equations, and directly captures both turbulent and acoustic pressure fluctuations over a wide range of scales given adequate computational grid resolution. In this study the same gap-type deflector configuration is installed on two different types of vehicles, a SUV and a sedan.
Technical Paper

A Study on Development of Body Structure Using Hydroforming of a Thin-Walled UHSS Tube

2013-03-25
2013-01-0035
Hydroforming process is an emerging manufacturing technology which allows engineers to use continuous closed section without flange for spot weld in a given package envelope. In this research, Hydroforming is applied to a front pillar and a roof side rail for improvement of obstruction angle, body stiffness and roof crush resistance. In addition, the joints of front / center pillar that were integrated into the hydroforming part and structure of package tray were improved. As a result, front pillar width is reduced by 23%, body torsional stiffness is increased by 45% and roof crush resistance is improved by 35%.
Technical Paper

Combustion Process Analysis in a HSDI Diesel Engine Using a Reduced Chemical Kinetics

2004-03-08
2004-01-0108
The combustion characteristics of a HSDI diesel engine were analyzed numerically using a reduced chemical kinetics. The reaction mechanism consisting of 26 steps and 17 species including the Zel'dovich NOx mechanism for the higher hydrocarbon fuel was implemented in the KIVA-3V. The characteristic time scale model was adopted to account for the effects of turbulent mixing on the reaction rates. The soot formation and oxidation processes are represented by Hiroyasu's model and NSC's model. The validation cases include the homogenous fuel/air mixture and the spray combustion in a constant volume chamber. After the validation, the present approach was applied to the analysis of the spray combustion processes in a HSDI diesel engine. The present approach reasonably well predicts the ignition delay, combustion processes, and emission characteristics in the high-pressure turbulent spray flame-field encountered in the practical HSDI diesel engines.
Technical Paper

Compatibility between Brake Discs and Friction Materials in DTV Generation and Recovery Test

2005-10-09
2005-01-3918
A comparative study was carried out to investigate the DTV (disk thickness variation) behavior according to the types of brake disks (gray iron grade 250 and high-carbon gray iron grade 200, 170) with two typical friction materials (non-steel and low-steel friction materials). To evaluate DTV generation and recovery characteristics, a parasitic drag mode simulating highway driving (off-brake) and a normal braking mode simulating city traffic driving (on-brake) were used with an inertia brake dynamometer. Results showed that DTV and BTV were strongly affected by the microstructure, hardness level and distribution of the gray cast iron with the friction material types. The BTV was reduced in the friction two pairs using non-steel friction materials with high carbon grade disks and low-steel friction materials with high-carbon, low hardness disk. In particular, the pair of low-steel friction materials and high-carbon, low-hardness brake disks was more effective on DTV recovery.
Technical Paper

A New Combustion Model Based on Transport of Mean Reaction Progress Variable in a Spark Ignition Engine

2008-04-14
2008-01-0964
In this study a new model is proposed for turbulent premixed combustion in a spark-ignition engine. An independent transport equation is solved for the mean reaction progress variable in a propagation form in KIVA-3V. An expression for turbulent burning velocity was previously given as a product of turbulent diffusivity in unburned gas, laminar flame speed and maximum flame surface density. The model has similarity with the G equation approach, but originates from zone conditionally averaged formulation for unburned gas. A spark kernel grows initially as a laminar flame and becomes a fully developed turbulent flame brush according to a transition criterion in terms of the kernel size and the integral length scale. Simulation of a homogeneous charge pancake chamber engine showed good agreement with measured flame propagation and pressure trace. The model was also applied against experimental data of Hyundai θ-2.0L SI engine.
Technical Paper

A Study for Improving the Resistance to Fretting Corrosion of SCr 420 Gear Steel

2007-08-05
2007-01-3734
A study for improving the resistance to fretting corrosion of SCr 420 pinion gear was conducted. Fretting is the damage to contacting surfaces experiencing slight relative reciprocating sliding motion of low amplitude. Fretting corrosion is the fretting damage to unlubricated contacting surfaces accompanied by corrosion, mostly oxidation that occurs if the fretting occurs in air. Two kinds of conventional heat treatment and a newly designed one suggested for improving the resistance to the fretting corrosion of pinion gear were compared each other to find out what is the main factor for generating fretting corrosion phenomenon. Increased carbon potential at both the heating and diffusing zone and reduced time of tempering was found out to be a solution for improving the resistance to fretting corrosion of forged and heat treated gear steel. On the contrary, modified carbo-nitriding using ammonia gas has been getting worse the fretting corrosion problem.
Technical Paper

Suppression of Open-Jet Pressure Fluctuations in the Hyundai Aeroacoustic Wind Tunnel

2004-03-08
2004-01-0803
Peak pressure fluctuation amplitudes in the ¾ open-jet test-section of the Hyundai Aeroacoustic Wind Tunnel have been reduced from root-mean-square levels equal to 6% of the test-section dynamic pressure to levels of less than 0.5% over almost the full wind speed range of the tunnel. The improvement was accomplished using a retrofit of the test-section collector. Using an analysis of the physics of the problem, it was found that the HAWT pressure fluctuations could be accurately modeled as a resonance phenomenon in which acoustic modes of the full wind tunnel circuit are excited by a nozzle-to-collector edgetone-feedback loop. Scaling relations developed from the theory were used to design an experiment in 1/7th scale of the HAWT circuit, which resulted in the development of the new collector design. Data that illustrate the benefit of the reduction in pressure fluctuation amplitudes on passenger-car aerodynamic force measurements are presented.
Technical Paper

Premixed Combustion Modeling in an SI Engine Considering the Burned Gas Composition

2005-05-11
2005-01-2108
Conventional combustion models are suitable for predicting flame propagation for a wrinkled flamelet configuration. But they cannot predict the burned gas composition. This causes the overestimation of burned gas temperature and pressure. A modified method of combustion simulation was established to calculate the chemical composition and to investigate their ultimate fate in the burned gas region. In this work, the secondary products of combustion process, like CO and H2, were considered as well as the primary products like CO2 and H2O. A 3-dimensional CFD program was used to simulate the turbulent combustion and a zero dimensional equilibrium code was used to predict the chemical composition of burned gas. With this simple connection, more reasonable temperature and pressure approaching the real phenomena were predicted without additional time costs.
Technical Paper

Improvement of Fatigue Strength of Automatic Transmission Gear by Developing Controlled Rolled Alloy Steel

2000-03-06
2000-01-0614
The controlled rolling process has been introduced to increase strength and toughness of alloy steels for the application of transmission gear. Cr-Mo alloy steel containing 0.02% Nb was controlled rolled in the temperature range of 870-970°C, showed fine austenite grain size, about ASTM No.11, resulted from the effects of recrystallization and Nb(C,N) precipitation. To investigate the effects of grain refinement on mechanical properties, several tests were conducted for the newly developed controlled rolled steel and conventional Ni-Cr-Mo alloy steel after carburizing. The new steel showed 2.1 times higher pitting resistance than the conventional steel. Fatigue limits of new and conventional steels were 950 and 930 MPa respectively. Charpy impact energy of new steel was improved about 35% compared with the conventional steel. Consequently, the pinion gear from the new steel instead of conventional one showed enhanced performance, especially pitting resistance, in dynamometer test.
Technical Paper

Development of a Vehicle Electric Power Simulator for Optimizing the Electric Charging System

2000-03-06
2000-01-0451
The electric power system of a modern vehicle has to supply enough electrical energy to numerous electrical and electronic systems. The electric power system of a vehicle consists of two major components: a generator and a battery. A detailed understanding of the characteristics of the electric power system, electrical load demands, and the driving environment such as road, season, and vehicle weight are required when the capacities of the generator and the battery are to be determined for a vehicle. In order to avoid the over/under design problem of the electric power system, an easy-to-use and inexpensive simulation program may be needed. In this study, a vehicle electric power simulator is developed. The simulator can be utilized to determine the optimized capacities of generators and batteries appropriately. To improve the flexibility and easy usage of the simulation program, the program is organized in modular structures, and is run on a PC.
Technical Paper

Development of Accelerated Corrosion Test Mode Considering Environmental Condition

2002-03-04
2002-01-1231
Accelerated simulation of vehicle corrosion in a controlled environment not only involves large chambers for actual vehicle tests, but also requires careful consideration of interactions between various parameters given a short time period within which the test is bounded. A new corrosion durability test mode reproducing various field conditions using salt spray, climatic, sunlight simulation and cold chambers has been developed. Verification of the test mode is carried out using four actual vehicle corrosion tests correlated against used cars of Nort h America and Northern Europe. The process of new corrosion test mode is discussed along with the characteristics of the test chambers.
Technical Paper

The Characteristics of TPE for Skin of Automotive Instrument Panel

2002-03-04
2002-01-0313
In order to replace PVC with TPO as I/P skin layer of invisible PAB, the elongation behavior, vacuum thermoforming, thermal, light resistance and low temperature PAB deployment of TPO were investigated. With the elongation properties; 50cN ↑ melt strength, 300mm/s ↑ breaking speed, 200s ↑ breaking time, TPO was vacuum-formed well like PVC. The thermal and light resistances of TPO were superior to PVC. In terms of low temperature airbag test, PVC was fractured with the brittle behavior during the deployment. TPO, however, showed the ductile fracture. And also when TPO was used for PAB cover, the elongation ratio of TPO was also important criterion for the normal break without any interference to I/P part, outside of PAB. The 300∼500% elongation ratio was most preferable.
Technical Paper

Development of Fuel Cell Hybrid Vehicle by Using Ultra-Capacitors as a Secondary Power Source

2005-04-11
2005-01-0015
Hyundai motor company has developed a fuel cell hybrid vehicle that has ultra-capacitors as a secondary power source. The simulation of fuel cell vehicles allows the user to analyze various types of fuel cell systems and hybrid configurations before implementing into a real system and to reduce the development time and cost. Before implementing fuel cell vehicles, a fuel cell vehicle simulation model, that has component modularity and forward facing characteristics, was developed. The simulation model was used in designing the fuel cell hybrid vehicle to select component sizes and a hybrid configuration. The hybridization by using ultra-capacitors provided better fuel economy and power response than the hybridization by using batteries.
Technical Paper

Development of High Wear Resistant and Durable Coatings for Al Valve Spring Retainer

2007-04-16
2007-01-1748
The use of light-weight materials in automotive engine components has increased in order to achieve better fuel efficiency and engine performance. In this study, Al alloy (AI5056) valve spring retainer can reduce a weight by 63% in comparison to steel and improve the upper limit of engine speed by about 500rpm. The Al valve spring retainer was fabricated by cold forging and coated with hard anodizing, DLC (diamond like coating), cold spray and thermal spray for better wear resistance and durability. We conclude that among these materials the DLC coating improves the wear resistance of Al valve spring retainer and has a sufficient durability after endurance testing.
Technical Paper

Numerical Simulation on the Raindrop Transportation in the Turbulent Flow Field of the Heavy-Duty Intake System

2006-04-03
2006-01-1191
In this study, two-phase flow simulations have been performed for the intake system of a commercial truck. The intake duct, which is the first component in heavy-duty engine, is located in the upper side of a cabin. The flow in the intake system is a typical two-phase flow with the air as the continuous phase and the water as the dispersed phase during rainy weather. The numerical two-phase simulation is performed by using the Largrangian model as implemented in STAR-CD. The influence of the water droplets on the airflow as well as droplet break-up and interactions of the droplets with the walls can be taken into account. Two and three cyclone model inside the intake system have been investigated by numerical simulations. The computational results can be used to get a better understanding of the physics of the flow inside the intake system and to optimize the water separation.
Technical Paper

Development of Module Based IPS Evaluation System

2006-04-03
2006-01-1569
A module based IPS (Intelligent Power Switch) evaluation system is proposed in this paper. As the IPS is gradually replacing the conventional relay and fuses, the stability and reliability of power system depends more on these IPS. The proposed IPS evaluation system outperforms the conventional manual evaluation in terms of speed and efficiency. This paper will introduce the structure of hardware and software of the IPS evaluation system. The system is placed between the module and cable connector to evaluate the module in an operating car without changing the cables. The control and signal processing is carried out by personal computer which is connected to the evaluation system by USB (Universal Serial Bus). The load resistance can be switch from actual load to arbitrary value using relay circuitry and DC electric load controlled by GPIB (General Purpose Interface Bus). CAN (Controller Area Network) circuits were added to control the IPS mounted inside the module.
Technical Paper

Hyundai Full Scale Aero-acoustic Wind Tunnel

2001-03-05
2001-01-0629
A new Hyundai Aero-acoustic Wind Tunnel (HAWT) has been opened in the Nam-yang Technical Center of Hyundai Motor Company (HMC) since August 1999. This wind tunnel has a 3/4 semi-open jet test section and a closed circuit in order to improve aerodynamic and wind noise and thermodynamic characteristics of vehicles. The HMC technical center had started the feasibility study of full-scale wind tunnel in 1995, to improve the aerodynamic characteristics and to meet fuel consumption regulations. The main purpose of this facility is conduct various kinds of tests on customer driving conditions, including aerodynamic and aero-acoustic tests and engine cooling simulations, etc. The technical specification was made on the basis of HMC engineers' experience of their own model scale and full-scale wind tunnels (like MIRA or DNW) during last 10 years.
Technical Paper

The COANDA Flow Control and Newtonian Concept Approach to Achieve Drag Reduction of Passenger Vehicle

2001-03-05
2001-01-1267
In order to reduce total drag during aerodynamic optimization process of the passenger vehicle, induced drag should be minimized and pressure drag should be decreased by means of applying streamlined body shape. The reduction of wake area could decrease pressure drag, which was generated by boundary layer separation. The induced drag caused by rear axle lift and C-pillar vortex can be reduced by the employing of trunk lid edge and kick-up or an optimized rear spoiler. When a rear spoiler or kick-up shape was installed on the rear end of a sedan vehicle, drag was reduced but the wake area became larger. This contradiction cannot be explained by simply using Bernoulli’s principle with equal transit or longer path theory. Newtonian explanation with COANDA effect is adopted to explain this phenomenon. The relationships among COANDA effect, down wash, C-pillar vortex, rear axle lift and induced drag are explained.
Technical Paper

Analysis of Sensitivity and Optimization for Chassis Design Parameters on the X-Wind Stability

2015-03-10
2015-01-0025
In the view point of driving safety, the crosswind sensitivity of a vehicle becomes more important, as the driving speed in highway gets higher in these days. The sensitivity of a vehicle to crosswind depends on many factors, including the design of the suspension and aerodynamics of the body, etc. However, the knowledge about this phenomenon has still to be improved, in order to develop vehicle with optimum characteristics for crosswind stability. In this research, the physics behind the sensitivity of a vehicle is discussed in detail through various kinds of virtual test using computer aided engineering (CAE) simulation scheme. In the first, a reliable simulation model for vehicle, driver, wind generator and interactions among them is built. This simulation model is verified by comparison with test results of real vehicle. Then, the sensitivity analysis is carried out to find out the most influential design parameters.
Technical Paper

The Procedure for Improving R&H Performance of the New 2010 Hyundai Sonata by Modal Parameter Modification of Its Body

2010-04-12
2010-01-1136
Various deformation shapes of the vehicle body were investigated for the purpose to establish vehicle body's performance criteria which correlates well to handling performance and ride comfort. Using CAE tool, the dynamic behavior of a structure by its modal parameter can be described instead of by its nodes and elements. Each modal characteristic in a dynamic system is reduced by its modal stiffness, its modal mass and its damping parameter in the model. This technology offers not only computational efficiency but also parametric model enabling easy what-if simulation. This reduced model can be obtained by modal test as well as simulation of full FE model. It was also investigated that which mode is sensitive to ride or handling performance using the parameterized model. The body stiffness of the brand new 2010 SONATA was improved on reference to the sensitivity analysis. The ride and handling performance of the 2010 SONATA were verified by computer simulation and vehicle field test
X