Refine Your Search

Topic

Author

Search Results

Journal Article

Achieving Very Low PN Emissions with an Advanced Multi-Hole Injector Functionality and Adapted Spray Targeting Under High Fuel Pressure Conditions

2014-10-13
2014-01-2605
In the near future, emissions legislation will become more and more restrictive for direct injection SI engines by adopting a stringent limitation of particulate number emissions in late 2017. In order to cope with the combustion system related challenges coming along with the introduction of this new standard, Hitachi Automotive Systems Ltd., Hitachi Europe GmbH and IAV GmbH work collaboratively on demonstrating technology that allows to satisfy EU6c emissions limitations by application of Hitachi components dedicated to high pressure injection (1). This paper sets out to describe both the capabilities of a new high pressure fuel system improving droplet atomization and consequently mixture homogeneity as well as the process of utilizing the technology during the development of a demonstrator vehicle called DemoCar. The Hitachi system consists of a fuel pump and injectors operating under a fuel pressure of 30 MPa.
Technical Paper

A Phenomenological Homogenization Model Considering Direct Fuel Injection and EGR for SI Engines

2020-04-14
2020-01-0576
As a consequence of reduced fuel consumption, direct injection gasoline engines have already prevailed against port fuel injection. However, in-cylinder fuel homogenization strongly depends on charge motion and injection strategies and can be challenging due to the reduced available time for mixture formation. An insufficient homogenization has generally a negative impact on the combustion and therefore also on efficiency and emissions. In order to reach the targets of the intensified CO2 emission reduction, further increase in efficiency of SI engines is essential. In this connection, 0D/1D simulation is a fundamental tool due to its application area in an early stage of development and its relatively low computational costs. Certainly, inhomogeneities are still not considered in quasi dimensional combustion models because the prediction of mixture formation is not included in the state of the art 0D/1D simulation.
Journal Article

Management of Energy Flow in Complex Commercial Vehicle Powertrains

2012-04-16
2012-01-0724
After the realization of very low exhaust gas emissions and corresponding OBD requirements to fulfill Euro VI and Tier 4 legislation, the focus in heavy-duty powertrain development is on the reduction of fuel consumption and thus CO₂ emissions again. Besides this, the total vehicle operation costs play another major role. A holistic view of the overall powertrain system including the combustion process, exhaust gas aftertreatment, energy recuperation and energy storage is necessary in order to obtain the best possible system for a given application. A management system coordinating the energy flow between the different subsystems while guaranteeing low exhaust emissions plays a major part in operating such complex architectures under optimal conditions.
Journal Article

Physico-Chemical Modeling of an Integrated SCR on DPF (SCR/DPF) System

2012-04-16
2012-01-1083
A physico-chemical model of a Cu-zeolite SCR/DPF-system involving NH₃ storage and SCR reactions as well as soot oxidation reactions with NO₂ has been developed and validated based on fundamental experimental investigations on synthetic gas test bench. The goal of the work was the quantitative modeling of NOx and NH₃ tailpipe emissions in transient test cycles in order to use the model for concept design analysis and the development of control strategies. Another focus was put on the impact of soot on SCR/DPF systems. In temperature-programmed desorption experiments, soot-loaded SCR/DPF filters showed a higher NH₃ storage capacity compared to soot-free samples. The measured effect was small, but could affect the NH₃ slip in vehicle applications. A bimodal desorption characteristic was measured for different adsorption temperatures and heating rates.
Technical Paper

Control Strategies for Peak Temperature Limitation in DPF Regeneration Supported by Validated Modeling

2007-04-16
2007-01-1127
One of the main challenges in developing cost-effective diesel particulate filters is to guarantee a thermally safe regeneration under all possible conditions on the road. Uncontrolled regenerations occur when the soot reaction rate is so high that the cooling effect of the incoming exhaust gas is insufficient to keep the temperature below the required limit for material integrity. These conditions occur when the engine switches to idle while the filter is already hot enough to initiate soot oxidation, typically following engine operation at high torque and speed or active filter regeneration. The purpose of this work is to investigate engine management techniques to reduce the reaction rate during typical failure mode regenerations. A purely experimental investigation faces many difficulties, especially regarding measurement accuracy, repeatability in filter soot loading, and repeatability in the regeneration protocol.
Technical Paper

Gasoline HCCI/CAI on a Four-Cylinder Test Bench and Vehicle Engine - Results and Conclusions for the Next Investigation Steps

2010-05-05
2010-01-1488
Internal combustion engines with lean homogeneous charge and auto-ignition combustion of gasoline fuels have the capability to significantly reduce fuel consumption and realize ultra-low engine-out NOx emissions. Group research of Volkswagen AG has therefore defined the Gasoline Compression Ignition combustion (GCI®) concept. A detailed investigation of this novel combustion process has been carried out on test bench engines and test vehicles by group research of Volkswagen AG and IAV GmbH Gifhorn. Experimental results confirm the theoretically expected potential for improved efficiency and emissions behavior. Volkswagen AG and IAV GmbH will utilize a highly flexible externally supercharged variable valve train (VVT) engine for future investigations to extend the understanding of gas exchange and EGR strategy as well as the boost demands of gasoline auto-ignition combustion processes.
Technical Paper

Potential of an Innovative, Fully Variable Valvetrain

2004-03-08
2004-01-1393
Under the persistent pressure to further reduce fuel consumption worldwide, it is necessary to advance the processes that influence the efficiency of gasoline engines. In doing so, harnessing the entire potential of fully variable mechanical valve trains will involve targeting efforts on optimizing all design parameters. A new type of valve timing system is used to portray thermodynamic and mechanical as well as electronic aspects of developing fully variable mechanical valve timing and lift systems
Technical Paper

The Automated Shift Transmission (AST) - Possibilities and Limits in Production-Type Vehicles

2001-03-05
2001-01-0881
State-of-the-art powertrain concepts with automatic transmission must comply with increasingly stringent legislation on emissions and fuel consumption while fulfilling or surpassing customers' expectations as to driveability. In this respect, automated manual transmissions (AMT) and automated shift transmissions (AST) must compete with conventional automatic transmissions (AT) and continuously variable transmissions (CVT). In order to exploit the theoretical advantages of ASTs and put them into practice, complex ECU functions are needed to coordinate engine and transmission. Adaptive control, sophisticated clutch management and an intelligent shifting strategy allow shifting quality and shifting points to be simultaneously optimized to the effect that performance and comfort are increased while fuel consumption is reduced.
Technical Paper

Investigations on Ventilation Strategies for SI Cylinder Deactivation Based on a Variable Valve Train

2016-10-17
2016-01-2346
Advanced SI engines for passenger cars often use the cylinder deactivation technology for dethrottling and thus achieving a reduction of fuel consumption. The gas exchange valves of the deactivated cylinders are closed permanently by a zero lift of the cams. The solutions for cylinder deactivation can vary in the kind of gas composition included in the deactivated cylinders: charge air, exhaust gas or vacuum. All these strategies have in common the frequent loss of captured charge mass from cycle to cycle. Their two-stroke compression-expansion cycle additionally intensifies this phenomenon. Thus, a significant decrease of the minimum cylinder pressure can cause an undesired entry of lubricant into the combustion chamber. The idea was to ventilate the generally deactivated cylinders frequently to compensate the loss of captured cylinder charge mass. The task was to keep the minimum cylinder pressure above a certain limit to prevent the piston rings from a failure.
Technical Paper

Physical Modeling of Automotive Turbocharger Compressor: Analytical Approach and Validation

2011-09-13
2011-01-2214
Global warming is a climate phenomenon with world-wide ecological, economic and social impact which calls for strong measures in reducing automotive fuel consumption and thus CO2 emissions. In this regard, turbocharging and the associated designing of the air path of the engine are key technologies in elaborating more efficient and downsized engines. Engine performance simulation or development, parameterization and testing of model-based air path control strategies require adequate performance maps characterizing the working behavior of turbochargers. The working behavior is typically identified on test rig which is expensive in terms of costs and time required. Hence, the objective of the research project “virtual Exhaust Gas Turbocharger” (vEGTC) is an alternative approach which considers a physical modeled vEGTC to allow a founded prediction of efficiency, pressure rise as well as pressure losses of an arbitrary turbocharger with known geometry.
Technical Paper

Achieving the Max - Potential from a Variable Compression Ratio and Early Intake Valve Closure Strategy by Combination with a Long Stroke Engine Layout

2017-09-04
2017-24-0155
The combination of geometrically variable compression (VCR) and early intake valve closure (EIVC) proved to offer high potential for increasing efficiency of gasoline engines. While early intake valve closure reduces pumping losses, it is detrimental to combustion quality and residual gas tolerance due to a loss of temperature and turbulence. Large geometric compression ratio at part load compensates for the negative temperature effect of EIVC with further improving efficiency. By optimizing the stroke/bore ratio, the reduction in valve cross section at part load can result in greater charge motion and therefore in turbulence. Turbocharging means the basis to enable an increase in stroke/bore ratio, called β in the following, because the drawbacks at full load resulting from smaller valves can be only compensated by additional boosting pressure level.
Technical Paper

Virtual Exhaust-Gas Aftertreatment Test Bench - A Contribution to Model-Based Development and Calibration of Engine Control Algorithmsa

2012-04-16
2012-01-0897
Introducing new exhaust-gas aftertreatment concepts at mass production level places exacting demands on the overall development process - from defining process engineering to developing and calibrating appropriate control-unit algorithms. Strategies for operating and controlling exhaust-gas aftertreatment components, such as oxidation and selective catalytic reduction catalysts (DOC and SCR), diesel particulate filters (DPF) and SCR on DPF systems (SCR/DPF), have a major influence on meeting statutory exhaust-emission standards. Therefore it is not only necessary to consider the physical behavior of individual components in the powertrain but also the way in which they interact as the basis for ensuring efficient operation of the overall system.
Technical Paper

Modeling and Identification of a Gasoline Common Rail Injection System

2014-04-01
2014-01-0196
The precision of direct fuel injection systems of combustion engines is crucial for the further reduction of emissions and fuel consumption. It is influenced by the dynamic behavior of the fuel system, in particular the injection valves and the common rail pressure. As model based control strategies for the fuel system could substantially improve the dynamic behavior, an accurate model of the common rail injection system for gasoline engines - consisting of the main components high-pressure pump, common rail and injection valves - that could be used for control design is highly desirable. Approaches for developing such a model are presented in this paper. For each key component, two models are derived, which differ in temporal resolution and number of degrees of freedom. Experimental data is used to validate and compare the models. The data was generated on a test bench specifically designed and built for this purpose.
Technical Paper

Boost and EGR System for the Highly Premixed Diesel Combustion

2006-04-03
2006-01-0204
Advanced Diesel combustion strategies with the focus on the reduction of NOx and PM emission as well as fuel consumption need an increase of the EGR rate and therefore improved boost concepts. The suppression of the nitrogen oxide build up requires changes in the charge condition (charge temperature, EGR rate), which have to be realized by the gas exchange system. The gas exchange system of IAV's ADCS test engine was dimensioned with the help of the engine process simulation software THEMOS®. This paper shows simulation and test bench results of the potential to increase the EGR rate and the charge density at stationary and transient operation. The increase of both EGR rate and boost pressure, as well as the need for a better control of transient operation leads to greater requirements for the engine control system. The potential of the engine and its control system for an application to a demo vehicle will be assessed.
Technical Paper

Calibration Process for SCR Only TIER4i Engine for Construction Equipment

2012-09-24
2012-01-1954
The current legislation for industrial applications and construction equipment including earthmoving machines and crane engines allows different strategies to fulfill the corresponding exhaust emission limits. Liebherr Machines Bulle SA developed their engines to accomplish these limits using SCRonly technology. IAV supported this development, carrying out engine as well as SCR aftertreatment system and vehicle calibration work including the OBD and NOx Control System (NCS) calibration, as well as executing the homologation procedures at the IAV development center. The engines are used in various Liebherr applications certified for EU Stage IIIb, EPA TIER 4i, China GB4 and IMO MARPOL Tier II according to the regulations “97/68/EC”, “40 CFR Part 1039”, “GB17691-2005” and “40 CFR Parts 9, 85, et al.” using the same SCR hardware for all engine power variants of the corresponding I6 and V8 engine families.
Technical Paper

Advanced Turbocharger Model for 1D ICE Simulation - Part I

2013-04-08
2013-01-0581
Standard compressor and turbine maps obtained from steady-state test bench measurements are not sufficient for assessing transient turbocharger behavior. This also makes them inappropriate for gauging combustion-engine response and fuel consumption. Nor do they allow for the widely differing operating conditions which, apart from aerodynamics, have a major influence on heat transfer and turbocharger efficiency. This paper looks at a more complex approach of modeling the turbocharger as well developing appropriate measurement methods (“advanced turbocharger model”). This includes non-destructive measurements under various heat transfer conditions to define the turbocharger's adiabatic behavior needed to describe charge-air pressure increase in the compressor and engine exhaust gas backpressure from the turbine for transient engine operation.
Technical Paper

Machine-Learned Emission Model for Diesel Exhaust On-Board Diagnostics and Data Flow Processor as Enabler

2021-12-17
2021-01-5108
Conventional methods of physicochemical models require various experts and a high measurement demand to achieve the required model accuracy. With an additional request for faster development time for diagnostic algorithms, this method has reached the limits of economic feasibility. Machine learning algorithms are getting more popular in order to achieve a high model accuracy with an appropriate economical effort and allow to describe complex problems using statistical methods. An important point is the independence from other modelled variables and the exclusive use of sensor data and actuator settings. The concept has already been successfully proven in the field of modelling for exhaust gas aftertreatment sensors. An engine-out nitrogen oxide (NOX) emission sensor model based on polynomial regression was developed, trained, and transferred onto a conventional automotive electronic control unit (ECU) and also proves real-time capability.
Journal Article

Low-Temperature NOx Reduction by H2 in Diesel Engine Exhaust

2022-03-29
2022-01-0538
For the NOx removal from diesel exhaust, the selective catalytic reduction (SCR) and lean NOx traps are established technologies. However, these procedures lack efficiency below 200 °C, which is of importance for city driving and cold start phases. Thus, the present paper deals with the development of a novel low-temperature deNOx strategy implying the catalytic NOx reduction by hydrogen. For the investigations, a highly active H2-deNOx catalyst, originally engineered for lean H2 combustion engines, was employed. This Pt-based catalyst reached peak NOx conversion of 95 % in synthetic diesel exhaust with N2 selectivities up to 80 %. Additionally, driving cycle tests on a diesel engine test bench were also performed to evaluate the H2-deNOx performance under practical conditions. For this purpose, a diesel oxidation catalyst, a diesel particulate filter and a H2 injection nozzle with mixing unit were placed upstream to the full size H2-deNOx catalyst.
Technical Paper

High Efficiency HD Hydrogen Combustion Engines: Improvement Potentials for Future Regulations

2022-03-29
2022-01-0477
Hydrogen engines offer the possibility of a carbon neutral transportation - a focal point of current propulsion development activities especially for EU and US future concepts. From today's point of view, hydrogen can play an important role in this regard as it is a carbon-free fuel, no CO2 emissions are produced during its combustion process. Besides, it can be well used for lean burn combustion leading to very low NOx emissions, a key benefit in combination with an optimized after-treatment system for future ultra-low NOx legislations of heavy-duty (HD) engines. Comprehensive investigations using experimental tests and model-based development approach are performed using a six cylinder HD hydrogen engine featuring PFI (port fuel injection) aiming the definition of a high efficiency hydrogen engine concept.
Technical Paper

Holistic Evaluation of CO2 Saving Potentials for New Degrees of Freedom in SI Engine Process Control Based on Physical Simulations

2018-09-10
2018-01-1654
Specific shifting of load points is an important approach in order to reduce the fuel consumption of gasoline engines. A potential measure is cylinder deactivation, which is used as a study example. Currently CO2 savings of new concepts are evaluated by dynamic cycles simulations. The fuel consumption during driving cycles is calculated based on consumption-optimized steady-state engine maps. Discrete load point shifts occur as shifts within maps. For reasons of comfort shifts require neutral torque. The work of deactivated cylinders must be compensated by active cylinders within one working cycle. Due to the larger time constant of the air path the air charge must be increased or decreased in order to deactivate or activate cylinders without affecting the torque. A working-cycle-resolved, continuously variable parameter is prerequisite for process control. Manipulation of ignition timing enables a reduction of efficiency and gained work.
X