Refine Your Search

Topic

Author

Search Results

Journal Article

Model Based E85 Cold Start Optimization for DISI Engines

2009-06-15
2009-01-1909
The startability of SI engines, especially of DISI engines, is the greatest challenge when using ethanol blended fuels. The development of a suitable injection strategy is therefore the main engineering target when developing an ethanol engine with direct injection. In order to limit the test efforts of such a program, a vaporization model has been created that provides the quantity of vaporized fuel depending on pressure and on start and end, respectively number and split relation of injections. This model takes account of the most relevant fuel properties such as density, surface tension and viscosity. It also considers the interaction of the spray with cylinder liner, cylinder head and piston. A comparison with test results shows the current status and the need for action of this simulation model.
Technical Paper

Homogeneous Diesel Combustion with External Mixture Formation by a Cool Flame Vaporizer

2006-10-16
2006-01-3323
The homogeneous Diesel combustion is a way to effect a soot and nitrogen oxide (NOx) free Diesel engine operation. Using direct injection of Diesel fuel, the mixture typically ignites before it is fully homogenized. In this study a homogeneous mixture is prepared outside of the combustion chamber by a Cool Flame Vaporizer. At first the specification of the vaporizer is given in this paper. To determine the composition of the vaporizer gas an analysis using gas chromatography/mass spectroscopy (GC/MS) was made. The results give an idea of the effects on engine combustion. Followed by, the vaporizer was adapted to a single-cylinder Diesel engine. To adapt the engine's configuration regarding compression ratio and inlet temperature range a zero dimensional engine process simulation software was utilized. The engine was run in different operating modes.
Technical Paper

Effects of Charge Motion Characteristics on Engine Variables such as Emission Behavior and Efficiency

2007-04-16
2007-01-0640
Mixture formation in the combustion chamber is of paramount significance for diesel combustion processes. Particularly in inhomogeneous combustion processes with internal mixture formation, the course of combustion and composition of combustion products are heavily influenced by charge motion and material transport during the compression phase and during combustion itself. Charge motion is normally quantified in steady-state flow testing. This model-based test takes place under idealized conditions. This means that with a permanently open valve and constant pressure differential over the inlet port, a steady-state flow of air is established in the simulated cylinder. The influence of piston movement is neglected. The test delivers integral characteristic flow figures, such as swirl number, flow number and tumble number.
Technical Paper

Air System Control for Advanced Diesel Engines

2007-04-16
2007-01-0970
In order to satisfy environmental regulations while maintaining strong performance and excellent fuel economy, advanced diesel engines are employing sophisticated air breathing systems. These include high pressure and low pressure EGR (Hybrid EGR), intake and exhaust throttling, and variable turbine geometry systems. In order to optimize the performance of these sub-systems, system level controls are necessary. This paper presents the design, benefits and test results of a model-based air system controller applied to an automotive diesel engine.
Technical Paper

In-cylinder Flow Field Measurement with Doppler Global Velocimetry in Combination with Droplet Distribution Visualization by Mie Scattering

2009-04-20
2009-01-0652
Flow fields and fuel distribution play a critical role in developing the combustion process inside the cylinders of piston engines. This has prompted the development of measurement and diagnostic capabilities including laser techniques like Doppler Global Velocimetry (DGV). The paper provides an overview of the basics of DGV and the type of results that can be obtained. It also includes a short comparison to Particle Image Velocimetry (PIV) which is a popular alternative method. Furthermore, it is shown that DGV can be used simultaneously in combination with droplet distribution visualization inside cylinders based on Mie scattering.
Technical Paper

Gasoline HCCI/CAI on a Four-Cylinder Test Bench and Vehicle Engine - Results and Conclusions for the Next Investigation Steps

2010-05-05
2010-01-1488
Internal combustion engines with lean homogeneous charge and auto-ignition combustion of gasoline fuels have the capability to significantly reduce fuel consumption and realize ultra-low engine-out NOx emissions. Group research of Volkswagen AG has therefore defined the Gasoline Compression Ignition combustion (GCI®) concept. A detailed investigation of this novel combustion process has been carried out on test bench engines and test vehicles by group research of Volkswagen AG and IAV GmbH Gifhorn. Experimental results confirm the theoretically expected potential for improved efficiency and emissions behavior. Volkswagen AG and IAV GmbH will utilize a highly flexible externally supercharged variable valve train (VVT) engine for future investigations to extend the understanding of gas exchange and EGR strategy as well as the boost demands of gasoline auto-ignition combustion processes.
Technical Paper

Potential of an Innovative, Fully Variable Valvetrain

2004-03-08
2004-01-1393
Under the persistent pressure to further reduce fuel consumption worldwide, it is necessary to advance the processes that influence the efficiency of gasoline engines. In doing so, harnessing the entire potential of fully variable mechanical valve trains will involve targeting efforts on optimizing all design parameters. A new type of valve timing system is used to portray thermodynamic and mechanical as well as electronic aspects of developing fully variable mechanical valve timing and lift systems
Technical Paper

The Controlled Vane-Type Oil Pump for Oil Supply on Demand for Passenger Car Engines

2002-03-04
2002-01-1319
The oil supply of combustion engines today is typically realized by oil pumps with constant displacement. To secure the operational safety in hot idling these pumps are oversized, what causes low efficiency in most of operating speeds. IAV developed a vane-type oil pump, which allows to infinitely regulate the delivery rate. Because of no oil release over a pressure limiting valve the pump achieves a higher efficiency in a wide range of operation. The design of the theoretical delivery characteristic allows the calculated and particular increase of oil pressure to avoid critical operating conditions and to support hydraulically operated functions as variable camshaft timing.
Technical Paper

Investigations on Ventilation Strategies for SI Cylinder Deactivation Based on a Variable Valve Train

2016-10-17
2016-01-2346
Advanced SI engines for passenger cars often use the cylinder deactivation technology for dethrottling and thus achieving a reduction of fuel consumption. The gas exchange valves of the deactivated cylinders are closed permanently by a zero lift of the cams. The solutions for cylinder deactivation can vary in the kind of gas composition included in the deactivated cylinders: charge air, exhaust gas or vacuum. All these strategies have in common the frequent loss of captured charge mass from cycle to cycle. Their two-stroke compression-expansion cycle additionally intensifies this phenomenon. Thus, a significant decrease of the minimum cylinder pressure can cause an undesired entry of lubricant into the combustion chamber. The idea was to ventilate the generally deactivated cylinders frequently to compensate the loss of captured cylinder charge mass. The task was to keep the minimum cylinder pressure above a certain limit to prevent the piston rings from a failure.
Technical Paper

Physical Modeling of Automotive Turbocharger Compressor: Analytical Approach and Validation

2011-09-13
2011-01-2214
Global warming is a climate phenomenon with world-wide ecological, economic and social impact which calls for strong measures in reducing automotive fuel consumption and thus CO2 emissions. In this regard, turbocharging and the associated designing of the air path of the engine are key technologies in elaborating more efficient and downsized engines. Engine performance simulation or development, parameterization and testing of model-based air path control strategies require adequate performance maps characterizing the working behavior of turbochargers. The working behavior is typically identified on test rig which is expensive in terms of costs and time required. Hence, the objective of the research project “virtual Exhaust Gas Turbocharger” (vEGTC) is an alternative approach which considers a physical modeled vEGTC to allow a founded prediction of efficiency, pressure rise as well as pressure losses of an arbitrary turbocharger with known geometry.
Technical Paper

Cold Start Simulation and Test on DISI Engines Utilizing a Multi-Zone Vaporization Approach

2012-04-16
2012-01-0402
Recent years have witnessed a dramatic increase in global ethanol production, while cellulosic feedstock or the algae-based production approach make more sustainable ethanol production foreseeable in many countries. The ethanol produced will increasingly penetrate the markets not only as blending component, but also as main fuel component, boosting demand for flex-fuel vehicles. One of the main challenges for flex-fuel vehicles is the cold start due to the poor vapor pressure of ethanol. This is detrimental to starting capability in DISI engines in particular, with increased cylinder wall wetting causing higher oil dilution. The most efficient solution for DISI engines is a smart injection strategy, enabling fuel vaporization during injection in the compression stroke. But this requires optimum injection parameters such as injection timing, split ratio and rail pressure.
Technical Paper

Investigations on the Potential of a Variable Miller Cycle for SI Knock Control

2013-04-08
2013-01-1122
A promising combustion technology for DISI downsizing engines is the Miller cycle. It is based on an early intake valve closing for the separation of effective and geometric compression ratio. Therefore IAV has prepared a turbocharged DISI test engine with a high geometric compression ratio. This engine is equipped with the Schaeffler “UniAir” variable valve train in order to investigate a variable Miller cycle valve timing in the turbocharged map area. The goal is to investigate whether and how a rapidly variable Miller cycle can influence the knocking behavior. Therefore its potential for a SI knock control can be evaluated. The investigated parameters in a steady-state engine dyno mode were the intake valve closing timing, the intake camshaft phasing and the ignition timing. A variable intake valve closing Miller cycle strategy, a variable intake camshaft phasing Miller cycle strategy and a state-of-the- art ignition timing strategy have been investigated.
Technical Paper

A New Hardware-Assisted Inlet Port Development Process for Diesel Engines Using Doppler Global Velocimetry

2005-04-11
2005-01-0640
As more virtual product development is integrated into the mass-production development process and overall development times are shortened, efficient intake-port design requires closer cooperation between design, simulation and test engineers. Doppler Global Velocimetry (DGV) has become an important link in the overall intake-port development process as it provides 3D-vector fields of flow velocity. Hence, it can be used to make direct comparisons with 3D-CFD-simulation results. The present paper describes the hardware-assisted inlet port development process for diesel engines, the cooperation among port design, 3D-CFD-simulation with the creation of alternative geometries and DGV flow-measurement of preferred variants with their capability of checking and improving simulation results.
Technical Paper

Boost and EGR System for the Highly Premixed Diesel Combustion

2006-04-03
2006-01-0204
Advanced Diesel combustion strategies with the focus on the reduction of NOx and PM emission as well as fuel consumption need an increase of the EGR rate and therefore improved boost concepts. The suppression of the nitrogen oxide build up requires changes in the charge condition (charge temperature, EGR rate), which have to be realized by the gas exchange system. The gas exchange system of IAV's ADCS test engine was dimensioned with the help of the engine process simulation software THEMOS®. This paper shows simulation and test bench results of the potential to increase the EGR rate and the charge density at stationary and transient operation. The increase of both EGR rate and boost pressure, as well as the need for a better control of transient operation leads to greater requirements for the engine control system. The potential of the engine and its control system for an application to a demo vehicle will be assessed.
Technical Paper

Advantages of Diesel Engine Control Using In-Cylinder Pressure Information for Closed Loop Control

2003-03-03
2003-01-0364
Increasing emissions regulations, diagnostics capability, and other demands in vehicle refinement, have led to the need for increasingly complex engine control systems. These demands have led to in-cylinder combustion control, especially for the diesel engine. Diesel engine combustion relies heavily on the auto-ignition process. Therefore accurate control of this process is important and will become even more important for HCCI-engines. This paper discusses the configuration of a diesel engine for in-cylinder combustion control. It describes the digital evaluation of the cylinder pressure signal and the computation of the physical parameters necessary for proper combustion analysis, along with methods for using the calculated combustion parameter for engine control. The paper demonstrates the advantages of electronic engine control combined with in-cylinder pressure information. The paper also addresses some of the future challenges of engine control.
Technical Paper

Advanced Turbocharger Model for 1D ICE Simulation - Part I

2013-04-08
2013-01-0581
Standard compressor and turbine maps obtained from steady-state test bench measurements are not sufficient for assessing transient turbocharger behavior. This also makes them inappropriate for gauging combustion-engine response and fuel consumption. Nor do they allow for the widely differing operating conditions which, apart from aerodynamics, have a major influence on heat transfer and turbocharger efficiency. This paper looks at a more complex approach of modeling the turbocharger as well developing appropriate measurement methods (“advanced turbocharger model”). This includes non-destructive measurements under various heat transfer conditions to define the turbocharger's adiabatic behavior needed to describe charge-air pressure increase in the compressor and engine exhaust gas backpressure from the turbine for transient engine operation.
Technical Paper

Calibration of Torque Structure and Charge Control System for SI Engines Based on Physical Simulation Models

2006-04-03
2006-01-0854
A physics-based simulation program developed by IAV is used to calibrate the torque structure and cylinder charge calculation in the electronic control unit of SI engines. The model calculates both the charge cycle and combustion phase based on flow mechanics and a fractal combustion model. Once the air mass in the charge cycle has been computed, a fractal combustion model is used for the ongoing calculation of cylinder pressure and temperature. The progression of cylinder pressure over the high and low-pressure phases also provides information on engine torque. Following the engine-specific calibration of the model using elemental geometric information and reduced test bench measurements, the physical engine properties can be simulated over the operating cycle. The calibrated model allows simulations to be carried out at all operating points and the results to be treated as virtual test bench measurements.
Technical Paper

A Highly Efficient Simulation-Based Calibration Method Exemplified by the Charge Control

2005-04-11
2005-01-0052
A physically based simulation program developed by IAV makes a notable reduction of test bed measurements for the calibration of the cylinder charge calculation possible. Based upon geometric engine parameters and camshaft profiles, the cylinder charge is calculated from thermodynamic relationships taking into account the contribution of residual gas. After successful engine-specific calibration of the simulation model on the basis of a reduced set of test bed measurements, it is possible to calculate the cylinder air mass over the entire range of valve timing settings and operating points (engine load and speed). The simulation-generated “virtual” measurements can then be used for calibration of the control unit software over the entire operating range.
Technical Paper

Comparison of Different Transient Air Charge Models

2005-04-11
2005-01-0051
The correct estimation of the air charge is crucial for the control of gasoline engines. This paper introduces an air charge estimation based on both physical and statistical models. For the physical model, an investigation was made to determine if the assumption of an isothermal process in the intake manifold is too strict and should be weakened to an assumption of an adiabatic process. For the adaptation of the statistical models, the Design of Experiments (DoE) method is used. The DoE method can shorten test expenses and calibration time significantly. The resulting model was tested with a 2-liter gasoline engine.
Technical Paper

Fundamental Investigations about Heated Fuel Injection on SI Engines

2018-05-30
2018-37-0003
Mixture formation in gasoline direct-injection engines is largely determined by the quality of injection. Injection systems with a wide range of layouts are used today in enhancing spray quality. As parameters, the pressure and temperature of injected fuel play a crucial part in defining quality. The effect increasing pressure has on the quality of spray is basically known. So are ways of applying this process to gasoline fuel. The effect of massively increasing the temperature of injected fuel - to the point of reaching supercritical conditions - in contrast, is not known in any detail. For this reason, the following paper focuses attention on examining the fundamental influence of increasing fuel temperature from 25 °C to 450 °C on the spray behavior of a high-pressure injector with a GDI nozzle. Combining relevant levels of pressure and temperature, discussion also turns to supercritical fuel conditions and their effects on spray behavior.
X