Refine Your Search

Topic

Author

Search Results

Journal Article

Advanced Injection Strategies for Controlling Low-Temperature Diesel Combustion and Emissions

2009-06-15
2009-01-1962
The simultaneous reduction of engine-out nitrogen oxide (NOx) and particulate emissions via low-temperature combustion (LTC) strategies for compression-ignition engines is generally achieved via the use of high levels of exhaust gas recirculation (EGR). High EGR rates not only result in a drastic reduction of combustion temperatures to mitigate thermal NOx formation but also increases the level of pre-mixing thereby limiting particulate (soot) formation. However, highly pre-mixed combustion strategies such as LTC are usually limited at higher loads by excessively high heat release rates leading to unacceptable levels of combustion noise and particulate emissions. Further increasing the level of charge dilution (via EGR) can help to reduce combustion noise but maximum EGR rates are ultimately restricted by turbocharger and EGR path technologies.
Journal Article

Online Implementation of an Optimal Supervisory Control for a Parallel Hybrid Powertrain

2009-06-15
2009-01-1868
The authors present the supervisory control of a parallel hybrid powertrain, focusing on several issues related to the real-time implementation of optimal control based techniques, such as the Equivalent Consumption Minimization Strategies (ECMS). Real-time implementation is introduced as an intermediate step of a complete chain of tools aimed at investigating the supervisory control problem. These tools comprise an offline optimizer based on Pontryagin Minimum Principle (PMP), a two-layer real-time control structure, and a modular engine-in-the-loop test bench. Control results are presented for a regulatory drive cycle with the aim of illustrating the benefits of optimal control in terms of fuel economy, the role of the optimization constraints dictated by drivability requirements, and the effectiveness of the feedback rule proposed for the adaptation of the equivalence factor (Lagrange multiplier).
Journal Article

Optimization of a Euro 5 Vehicle Powered by an Ethanol Based Diesel Fuel

2010-05-05
2010-01-1520
Diversifying energy resources and reducing greenhouse gas emissions are key priorities in the forthcoming years for the automotive industry. Currently, among the different solutions, sustainable biofuels are considered as one of the most attractive answer to these issues. This paper deals with the vehicle application of an innovative diesel fuel formulation using Ethanol to tackle these future challenges. The main goal is to better understand the impact of using biofuel blends on engine behavior, reliability and pollutants emissions. This alternative oxygenated fuel reduces dramatically particulate matter (PM) emissions; this paves the way to improve the NOx/PM/CO₂ trade-off. Another major interest is to avoid adding a particulate filter in the exhaust line and to avoid modifying powertrain and vehicle hardware and therefore to minimize the overall cost to fulfill upcoming emission regulations.
Journal Article

Influence of the Valve-lift Strategy in a CAI™ Engine using Exhaust Gas Re-Breathing - Part 2: Optical Diagnostics and 3D CFD Results

2009-04-20
2009-01-0495
Among the existing concepts that help to improve the efficiency of spark ignition engines at part load, Controlled Auto-Ignition™ (CAI™) is an effective way to lower both fuel consumption and pollutant emissions without major modifications of the engine design. The CAI™ concept is based on the auto-ignition of a fuel mixture highly diluted with burnt gases in order to achieve high indicated efficiency and low pollutant emissions through low temperature combustion. Large amounts of burnt gases can be trapped in the cylinder by re-breathing them through the exhaust ports during the intake stroke. For that, a 2-step exhaust valve-lift profile is used. The interaction between the intake and exhaust flows during the intake stroke was identified as a key parameter to control the subsequent combustion in a CAI™ port fuel injected (PFI) engine.
Journal Article

Reduction of the Compression Ratio on a HSDI Diesel Engine: Combustion Design Evolution for Compliance the Future Emission Standards

2008-04-14
2008-01-0839
Environment protection issues regarding CO2 emissions as well as customers requirements for fun-to-drive and fuel economy explain the strong increase of Diesel engine on European market share in all passenger car segments. To comply future purposes of emission regulations, particularly dramatic decrease in NOx emissions, technology need to keep upgrading; the reduction of the volumetric compression ratio (VCR) is one of the most promising research ways to allow a simultaneous increase in power at full load and NOx / PM trade-off improvement at part load. This study describes the combustion effects of the reduction of compression ratio and quantifies improvements obtained at full load and part load running conditions on a HSDI Common Rail engine out performance (power, fuel consumption, emissions and noise). Potential and limitations of a reduced compression ratio from 18:1 to 14:1 are underlined.
Journal Article

System Approach for Compliance with Full Load Targets on a Wall Guided Diesel Combustion System

2008-04-14
2008-01-0840
Low temperature combustion concept as HCCI is one of the most promising research ways to comply future emission regulations of Diesel passenger vehicles. IFP promoted this concept with NADI™ (Narrow Angle Direct Injection) combustion design whose original approach lies on a fuel spray guided by the bowl central tip to the re-entrant. For full load operating range, one of the key issue for success is to use as much as possible available air in the combustion chamber in order to reach low value of air fuel ratio, and therefore high value of specific power and specific torque. In this study, engine tests on a single cylinder engine with NADI™ concept are performed at full load; 3-D calculations as well as air/fuel mixing process visualizations in a constant volume vessel with optical access allowed to establish criteria for helping future combustion system design for full load operation.
Journal Article

Using Multiple Injection Strategies in Diesel Combustion: Potential to Improve Emissions, Noise and Fuel Economy Trade-Off in Low CR Engines

2008-04-14
2008-01-1329
In former high compression ratio Diesel engines a single injection was used to introduce the fuel into the combustion chamber. With actual direct injection engines which exhibit a compression ratio between 17:1 and 18:1 single or multiple early injections called “pilot injections” are also added in order to reduce the combustion noise. For after-treatment reasons a late injection during the expansion stroke named “post injection” may also be used in some operating conditions. Investigations have been conducted on lower compression ratio Diesel engine and in high EGR rate operating conditions to evaluate the benefits of multiple injection strategies to improve the trade off between engine emissions, noise and fuel economy.
Technical Paper

A 3WCC Global Kinetic Model: A Calibration Method Using Laboratory Scale and Engine Test Bench Experiments

2008-04-14
2008-01-0453
A 3 way catalytic converter (3WCC) model based on a global kinetic model was developed and validated against laboratory scale and engine test bench experiments. Various equivalence ratios and temperatures were tested. A methodology was finalized and applied to calibrate the kinetic constants. Laboratory scale experiments were first used to characterize the reaction mechanism during light-off, including the way reduction and oxidation reactions begin and compete with each other when temperature increases. The numerical results are in good agreement with the laboratory scale light-off results. Also, when adapted to simulate the engine test bench experiments, the model is able to correctly reproduce both the light-off tests and the 3WCC conversion efficiency evolution versus equivalence ratio. A calibration method in two steps was thus established and successfully used. The combination of modeling with experimental work appeared to be a powerful tool to determine the reaction mechanism.
Technical Paper

Quantifying Benefits of Dual Cam Phasers, Lean Mixture and EGR on the Operating Range and Fuel Economy of a PFI NVO CAI Engine

2010-04-12
2010-01-0844
Among the existing concepts that help to improve the efficiency of spark-ignition engines at part load, Controlled Auto-Ignition™ (CAI™) is an effective way to lower both fuel consumption and pollutant emissions. This combustion concept is based on the auto-ignition of an air-fuel-mixture highly diluted with hot burnt gases to achieve high indicated efficiency and low pollutant emissions through low temperature combustion. To minimize the costs of conversion of a standard spark-ignition engine into a CAI engine, the present study is restricted to a Port Fuel Injection engine with a cam-profile switching system and a cam phaser on both intake and exhaust sides. In a 4-stroke engine, a large amount of burnt gases can be trapped in the cylinder via early closure of the exhaust valves. This so-called Negative Valve Overlap (NVO) strategy has a key parameter to control the amount of trapped burnt gases and consequently the combustion: the exhaust valve-lift profile.
Technical Paper

Matching and Evaluating Methods for Euro 6 and Efficient Two-stage Turbocharging Diesel Engine

2010-04-12
2010-01-1229
While fuel efficiency has to be improved, future Diesel engine emission standards will further restrict vehicle emissions, particularly of nitrogen oxides. Increased in-cylinder filling is recognized as a key factor in addressing this issue, which calls for advanced design of air and exhaust gas recirculation circuits and high cooling capabilities. As one possible solution, this paper presents a 2-stage boosting breathing architecture, specially dedicated to improving the trade-off between emissions and fuel consumption instead of seeking to improve specific power on a large family vehicle equipped with a 1.6-liter Diesel engine. In order to do it, turbocharger matching was specifically optimized to minimize engine-out NOx emissions at part-load and consumption under common driving conditions. Engine speed and load were analyzed on the European driving cycle. The key operating points and associated upper boundary for NOx emission were identified.
Technical Paper

SCR for Passenger Car: the Ammonia-Storage Issue on a Fe-ZSM5 Catalyst

2009-06-15
2009-01-1929
A comprehensive experimental approach has been developed for a Fe-ZSM5 micro-porous catalyst, through a collaborative project between IFP, PSA Peugeot-Citroën and the French Environment and Energy Management Agency (ADEME). Tests have first been conducted on a synthetic gas bench and yielded estimated values for the amount of NH3 stored on a catalyst sample. These data have further been compared to those obtained from an engine test bench, in running conditions representative of the entire operating range of the engine. 15 operating points have been chosen, considering the air mass flow and the exhaust temperature, and tested with different NH3/NOx ratios. Steady-state as well as transient conditions have been studied, showing the influence of three main parameters on the reductant storage characteristics: exhaust temperature, NO2/NOx ratio, and air mass flow.
Technical Paper

Improving Emissions, Noise and Fuel Economy Trade-Off by using Multiple Injection Strategies in Diesel Low Temperature Combustion (LTC) Mode

2010-10-25
2010-01-2162
Latest emissions standards impose very low NOx and particle emissions that have led to new Diesel combustion operating conditions, such as low temperature combustion (LTC). The principle of LTC is based on enhancing air fuel mixing and reducing combustion temperature, reducing raw nitrogen oxides (NOx) and particle emissions. However, new difficulties have arisen. LTC is typically achieved through high dilution rates and low CR, resulting in increased auto-ignition delay that produces significant noise and deteriorates the combustion phasing. At the same time, lower combustion temperature and reduced oxygen concentration increases hydrocarbon (HC) and carbon oxide (CO) emissions, which can be problematic at low load. Therefore, if LTC is a promising solution to meet future emission regulations, it imposes a new emissions, fuel consumption and noise trade-off. For this, the injection strategy is the most direct mean of controlling the heat release profile and fuel air mixture.
Technical Paper

Performances and Durability of DPF (Diesel Particulate Filter) Tested on a Fleet of Peugeot 607 Taxis: Final results

2004-03-08
2004-01-0073
In order to asses the durability of DPF, a study has been performed in order to study the evolution of several taxis (Peugeot 607) and the performance of this after-treatment systems over 80,000 km mileage in hard urban driving conditions, which corresponds to the recommended mileage before the first DPF maintenance (this periodicity is applied on the first generation of DPF technology launched in 2000). More specifically, the following evaluations are being performed at regular intervals (around 20 000 km): Regulated gaseous pollutant emissions on NEDC cycle (New European Driving Cycle) Particulate emissions, by mass measurement on NEDC but also by particle number and size measurement with SMPS (Scanning Mobility Particle Sizer) technique on NEDC and on unconventional steady-state running points.
Technical Paper

Development of the High Power NADI™ Concept Using Dual Mode Diesel Combustion to Achieve Zero NOx and Particulate Emissions

2002-05-06
2002-01-1744
Due to their high thermal efficiency coupled with low CO2 emissions, Diesel engines are promised to an increasing part of the transport market if their NOx and particulate emissions are reduced. Today, adequate after-treatments, NOx and PM traps are under industrialization with still concerns about fuel economy, robustness, sensitivity to fuel sulfur and cost because of their complex and sophisticated strategy. New combustion process such as Homogeneous Charge Compression Ignition (HCCI) are investigated for their potential to achieve near zero particulate and NOx emissions. Their main drawbacks are too high hydrocarbons (HC) and carbon monoxide (CO) emissions, combustion control at high load and then limited operating range and power output. As an answer for challenges the Diesel engine is facing, IFP has developed a combustion system able to reach near zero particulate and NOx emissions while maintaining performance standards of the D.I Diesel engines.
Technical Paper

Performances and Durability of DPF (Diesel Particulate Filter) Tested on a Fleet of Peugeot 607 Taxis First and Second Test Phases Results

2002-10-21
2002-01-2790
The use of Diesel engines has strongly increased during the last years and now represents 30% of the sales in Europe and up to 50% of the number of cars in circulation for some countries. This success is linked not only to the economical aspect of the use of such vehicles, but also to the recent technological improvements of these engines. The new technical solutions (high pressure direct injection, turbocharging…) have indeed allowed the increase of these engine performances while decreasing their fuel consumption, pollutant emissions and noise level. From an environmental point of view, Diesel engines are nevertheless penalized by their particulate and NOx emissions. The study and the treatment of the particulate, highly criticized for their potential impact on health, are the subject of numerous works of characterization and developments. PSA Peugeot-Citroën has recently launched its particulate filter technology on several types of vehicles.
Technical Paper

A Simulation Tool for Vehicle Emissions, Consumption and Performance Analysis - Applications to DPF Modeling and DID Turbocharged Engine Control Design

2006-09-14
2006-01-3004
Facing the stringent constraints on fuel consumption and pollutant emissions, the automotive manufacturers have to produce vehicles with an increasing number of complex systems working together. Numerical simulation for the system design, set-up and control strategies, helps to reduce the development cycle and the global cost. Existing simulation tools usually do not address, with a high level of details, the various physical domains involved in a vehicle powertrain. To overcome this challenge, IFP and IMAGINE, settled a partnership to develop detailed simulation tools dedicated to performance, consumption and emissions for conventional and hybrid vehicles [1]. These tools are integrated in a multi-domain simulation platform (AMESim®) where several levels of detail can be easily reached for each sub-element.
Technical Paper

Development of Highly Premixed Combustion Diesel Model: From Simulation to Control Design

2006-04-03
2006-01-1072
In the context of increasingly stringent pollution norms, reduced engine emissions are a great challenge for compressed ignition engines. After-treatment solutions are expensive and very complex to implement, while the NOx/PM trade-off is difficult to optimise for conventional Diesel engines. Therefore, in-cylinder pollutant production limitation by the HPC combustion mode (Highly Premixed Combustion) - including Homogeneous Charge Compression Ignition (HCCI) - represents one of the most promising ways for new generation of CI engine. For this combustion technology, control based on torque estimation is crucial: the objectives are to accurately control the cylinder-individual fuel injected mass and to adapt the fuel injection parameters to the in-cylinder conditions (fresh air and burned gas masses and temperature).
Technical Paper

Coupling of a NOx Trap and a CDPF for Emission Reduction of a 6-Cylinder HD Engine

2004-06-08
2004-01-1945
To ensure overall optimisation of heavy duty engine performance (with the respect of NOx&PM future European and US emissions standards), the use of a high efficiency NOx after-treatment system such as a NOx trap appears to be necessary. But running in rich conditions, even for a short time, leads to a large increase of particulate emissions so that a particulate filter is required. A first investigation with a NOx-trap only has been carried out to evaluate and optimise the storage, destorage and reduction phases from the NOx conversion efficiency and fuel penalty trade-off. The equivalence ratio level, the fuel penalty and the temperature level of the NOx-trap have been shown as a key parameter. Respective DPF and LNA locations have been studied. The configuration with the NOx-trap upstream provides the best NOx / fuel penalty trade-off since it allows NOx slip reduction and does not disturb the rich pulses.
Technical Paper

Overview of the European “Particulates” Project on the Characterization of Exhaust Particulate Emissions From Road Vehicles: Results for Light-Duty Vehicles

2004-06-08
2004-01-1985
This paper presents an overview of the results on light duty vehicles collected in the “PARTICULATES” project which aimed at the characterization of exhaust particle emissions from road vehicles. A novel measurement protocol, developed to promote the production of nucleation mode particles over transient cycles, has been successfully employed in several labs to evaluate a wide range of particulate properties with a range of light duty vehicles and fuels. The measured properties included particle number, with focus separately on nucleation mode and solid particles, particle active surface and total mass. The vehicle sample consisted of 22 cars, including conventional diesels, particle filter equipped diesels, port fuel injected and direct injection spark ignition cars. Four diesel and three gasoline fuels were used, mainly differentiated with respect to their sulfur content which was ranging from 300 to below 10 mg/kg.
Technical Paper

Comparison between the exhaust particles mass determined by the European regulatory gravimetric method and the mass estimated by ELPI

2005-05-11
2005-01-2147
Electrical Low Pressure Impactor (ELPI) is often employed to measure the particle number and size distribution of internal combustion engines exhaust gas. If appropriate values of particle density are available, the particle mass can be estimated by this method. Exhaust particles of three Euro3 passenger cars (one gasoline operating under stoichiometric conditions, one Diesel and one Diesel equipped with Diesel Particulate Filter) are measured using the current European regulations (gravimetric method on the are New European Driving Cycle) and estimated by ELPI particle number and size distribution. Different values for particle density are used to estimate the particle mass using all ELPI stages or only some of them. The results show that the particle mass estimated by ELPI is well correlated with the mass determined by filters for PM emissions higher than 0.025 g/km. This correlation is not very good at lower emissions.
X