Refine Your Search

Topic

Author

Search Results

Technical Paper

Influence of Mixture Fluctuations on Combustion in Direct Injection Spark Ignition Engines Simulations

2001-03-05
2001-01-1226
Modelling small and large scale fluctuations of fuel distribution is of high interest for stratified direct injection spark ignition (DISI) engines. Homogeneous combustion models need to be extended or replaced in order to account for these fluctuations. They are presently neglected in most engine simulations. Effects of mean fuel/air equivalence ratio gradient have been recently included in previous homogeneous mixture approaches. To account for local fluctuations of mixture composition, the new model ECFM-Z has been developed on the basis of recent Direct Numerical Simulation results and Coherent Flame Surface modelling. The model has been implemented in a CFD code (KMB) The influence of mixture fraction is integrated in the Extended Coherent Flame Surface combustion model. The model is based on a conditional approach. Unburnt hydrocarbons produced by lean flame local extinctions are taken into account.
Technical Paper

Development of a Multi-Sensors Head Gasket for Knock Localization

2003-03-03
2003-01-1117
In order to determine the area where knock occurs in a single cylinder engine, an acoustic methodology needs a minimum of four simultaneous pressure measurements in the combustion chamber. A specific cylinder head gasket integrating 12 pressure sensors has been developed and tested. The gasket is based on a bonded multilayer technology including high temperature piezoelectric cells, metallic and insulating sheets and printed circuit films. The total thickness is close to 1.25 mm (1/20 inch) and allows a straight forward substitution of the original gasket without modification. The sensors have large frequency bandwidth (typically 3-100 kHz) and withstand severe conditions (heat, combustion, pressure, vibrations, static pre-stress, electromagnetic fields and shocks). Signal processing adaptation of the dedicated exploitation software has brought good success for the single cylinder prototype, which remains operational after 100 hours of extreme conditions running (high knock).
Technical Paper

New Knock Localization Methodology for SI Engines

2003-03-03
2003-01-1118
A methodology has been developed to determine, for every cycle on which significant knock is detected, the area in which self-ignition occurs. This methodology is based on the exploitation by a dedicated algorithm of a minimum of 4 simultaneous combustion chamber pressure measurements. The algorithm has been first tested on the results of engine knocking simulation, then applied with success on a single-cylinder engine equipped with classical pressure transducers and with an instrumented cylinder head gasket developed for this application. The results obtained with these two kinds of transducers on several engine configurations and tunings are similar. If the timing and intensity of knock events depend on all engine parameters, its location is especially sensitive to such design parameters as fluid motion into the combustion chamber and spark plug position.
Technical Paper

Matching and Evaluating Methods for Euro 6 and Efficient Two-stage Turbocharging Diesel Engine

2010-04-12
2010-01-1229
While fuel efficiency has to be improved, future Diesel engine emission standards will further restrict vehicle emissions, particularly of nitrogen oxides. Increased in-cylinder filling is recognized as a key factor in addressing this issue, which calls for advanced design of air and exhaust gas recirculation circuits and high cooling capabilities. As one possible solution, this paper presents a 2-stage boosting breathing architecture, specially dedicated to improving the trade-off between emissions and fuel consumption instead of seeking to improve specific power on a large family vehicle equipped with a 1.6-liter Diesel engine. In order to do it, turbocharger matching was specifically optimized to minimize engine-out NOx emissions at part-load and consumption under common driving conditions. Engine speed and load were analyzed on the European driving cycle. The key operating points and associated upper boundary for NOx emission were identified.
Technical Paper

Development of a Flex Fuel Vehicle: Impact on Powertrain's Design and Calibration

2010-10-25
2010-01-2087
The benefits of running on ethanol-blended fuels are well known, especially global CO₂ reduction and performances increase. But using ethanol as a fuel is not drawbacks free. Cold start ability and vehicle autonomy are appreciably reduced. These two drawbacks have been tackled recently by IFP and its partners VALEO and Cristal Union. This article will focus on the second one, as IFP had the responsibility to design the powertrain of a fully flex-fuel vehicle (from 0 to 100% of ethanol) with two main targets: reduce the fuel consumption of the vehicle and maintain (at least) the vehicle performances. Using a MPI scavenging in-house concept together with turbocharging, as well as choosing the appropriate compression ratio, IFP managed to reach the goals.
Technical Paper

Turbine Efficiency Estimation for Fault Detection Application

2010-04-12
2010-01-0568
In nowadays diesel engine, the turbocharger system plays a very important role in the engine functioning and any loss of the turbine efficiency can lead to driveability problems and the increment of emissions. In this paper, a VGT turbocharger fault detection system is proposed. The method is based on a physical model of the turbocharger and includes an estimation of the turbine efficiency by a nonlinear adaptive observer. A sensitivity analysis is provided in order to evaluate the impact of different sensors fault, (drift and bias), used to feed the observer, on the estimation of turbine efficiency error. By the means of this analysis a robust variable threshold is provided in order to reduce false detection alarm. Simulation results, based on co-simulation professional platform (AMEsim© and Simulink©), are provided to validate the strategy.
Technical Paper

Generating Thermal Conditions to Regenerate a DPF: Impact of the Reductant on the Performances of Diesel Oxidation Catalysts

2009-04-20
2009-01-1085
The influence of the type of fuel and the feeding means to a DOC, in order to regenerate a DPF, was investigated. Diesel fuel in cylinder late post-injection was compared to the injection in the exhaust line, through an exhaust port injector, of diesel fuel, B10 (diesel fuel containing 10% of esters) and gasoline. Diesel fuel exhaust injection resulted in a deteriorated conversion efficiency, while the incorporation of esters to the diesel fuel was demonstrated to have no influence. Gasoline exhaust injection led to less HC slip than diesel fuels. Temperature dynamics resulting from injection steps showed taught that the shorter the hydrocarbons (within the tested fuels), the slower the response. These differences can be caught by simple models, leading to interesting opportunities for the model-based control of the DPF inlet temperature during active regenerations.
Technical Paper

Modelling Turbocharged Spark-Ignition Engines: Towards Predictive Real Time Simulators

2009-04-20
2009-01-0675
Due to increasingly stringent regulations, reduction of pollutant emissions and consumption are currently two major goals of the car industry. One way to reach these objectives is to enhance the management of the engine in order to optimize the whole combustion process. This requires the development of complex control strategies for the air and the fuel paths, and for the combustion process. In this context, engine 0D modelling emerges as a pertinent tool for investigating and validating such strategies. Indeed, it represents a useful complement to test bench campaigns, on the condition that these 0D models are accurate enough and manage to run quite fast, eventually in real time. This paper presents the different steps of the design of a high frequency 0D simulator of a downsized turbocharged Port Fuel Injector (PFI) engine, compatible with real time constraints.
Technical Paper

Tracer LIF Visualisation Studies of Piston-Top Fuel Films in a Wall-Guided, Low-NOx Diesel Engine

2008-10-06
2008-01-2474
Tracer laser induced fluorescence (LIF) imaging of piston-top fuel films has been performed within the combustion chamber of an optically-accessible, single cylinder Diesel engine. The first objective of the study was to adapt the tracer LIF technique so as to perform in-cylinder imaging of the fuel films under reacting (i.e. combustion) conditions. The results obtained in a wall-guided, combustion chamber operating under highly dilute, Diesel low temperature combustion (LTC) conditions reveal the significant presence of late-cycle piston-top fuel films. Furthermore, it is believed that these fuel films contribute to engine-out hydrocarbon (HC) emissions via a mechanism of flash boiling. An attempt was also made to evaluate the role of fuel volatility on fuel film lifetimes. This was achieved by using a 50/50 fuel mixture of two single component fuels whose boiling points correspond to moderately high and low volatility components of standard Diesel fuel.
Technical Paper

Six Degrees Crankshaft Individual Air Fuel Ratio Estimation of Diesel Engines for Cylinder Balancing Purpose

2006-04-03
2006-01-0013
In the context of modern engine control, one important variable is the individual Air Fuel Ratio (AFR) which is a good representation of the produced torque. It results from various inputs such as injected quantities, boost pressure, and the exhaust gas recirculation (EGR) rate. Further, for forthcoming HCCI engines and regeneration filters (Particulate filters, DeNOx), even slight AFR unbalance between the cylinders can have dramatic consequences and induce important noise, possible stall and higher emissions. Classically, in Spark Ignition engine, overall AFR is directly controlled with the injection system. In this approach, all cylinders share the same closed-loop input signal based on the single λ-sensor (normalized Fuel-Air Ratio measurement, it can be rewritten with AFR as they have the same injection set-point.
Technical Paper

A New 0D Approach for Diesel Combustion Modeling Coupling Probability Density Function with Complex Chemistry

2006-10-16
2006-01-3332
The model presented in this paper is an original contribution for two main mechanisms involved in a Diesel combustion chamber: the micro-mixing and the combustion heat release. The micro-mixing phenomenon is modelled thanks to the presumed probability density function theory adapted to the 0D combustion modeling issues in order to take into account the stratification of air / fuel ratio around the spray. The combustion heat release is obtained from complex chemistry look-up tables. These tables are issued from a dedicated use of the Flame Prolongation of ILDM theory and allow a large range of combustion conditions since it includes high EGR rates. Moreover, the spray model including evaporation and turbulent macro-mixing is based on the well-known Siebers theory.
Technical Paper

The Air Assisted Direct Injection ELEVATE Automotive Engine Combustion System

2000-06-19
2000-01-1899
The purpose of the ELEVATE (European Low Emission V4 Automotive Two-stroke Engine) industrial research project is to develop a small, compact, light weight, high torque and highly efficient clean gasoline 2-stroke engine of 120 kW which could industrially replace the relatively big existing automotive spark ignition or diesel 4-stroke engine used in the top of the mid size or in the large size vehicles, including the minivan vehicles used for multi people and family transportation. This new gasoline direct injection engine concept is based on the combined implementation on a 4-stroke bottom end of several 2-stroke engine innovative technologies such as the IAPAC compressed air assisted direct fuel injection, the CAI (Controlled Auto-Ignition) combustion process, the D2SC (Dual Delivery Screw SuperCharger) for both low pressure engine scavenging and higher pressure IAPAC air assisted DI and the ETV (Exhaust charge Trapping Valve).
Technical Paper

On the origin of Unburned Hydrocarbon Emissions in a Wall Guided, Low NOx Diesel Combustion System

2007-07-23
2007-01-1836
The formation mechanisms of unburned hydrocarbons (HC) in low NOx, homogeneous type Diesel combustion have been investigated in both standard and optical access single cylinder engines operating under low load (2 and 4 bar IMEP) conditions. In the standard (i.e. non-optical) engine, parameters such as injection timing, intake temperature and global equivalence ratio were varied in order to analyse the role of bulk quenching on HC emissions formation. Laser-induced fluorescence (LIF) imaging of in-cylinder unburned HC within the bulk gases was performed on the optical-access engine. Furthermore, studies were performed in order to ascertain whether the piston top-land crevice volume contributes significantly to engine-out HC emissions. Finally, the role of piston-top fuel films and their impact on HC emissions was studied. This was investigated on the all-metal engine using two fuels of different volatilities.
Technical Paper

Development of Highly Premixed Combustion Diesel Model: From Simulation to Control Design

2006-04-03
2006-01-1072
In the context of increasingly stringent pollution norms, reduced engine emissions are a great challenge for compressed ignition engines. After-treatment solutions are expensive and very complex to implement, while the NOx/PM trade-off is difficult to optimise for conventional Diesel engines. Therefore, in-cylinder pollutant production limitation by the HPC combustion mode (Highly Premixed Combustion) - including Homogeneous Charge Compression Ignition (HCCI) - represents one of the most promising ways for new generation of CI engine. For this combustion technology, control based on torque estimation is crucial: the objectives are to accurately control the cylinder-individual fuel injected mass and to adapt the fuel injection parameters to the in-cylinder conditions (fresh air and burned gas masses and temperature).
Technical Paper

A Study of Combustion Structure and Implications on Post-Oxidation Under Homogeneous and Stratified Operation in a DISI Engine

2006-04-03
2006-01-1262
An experimental investigation into the structure and flame propagation characteristics of stratified and homogeneous combustion has been performed in an optically-accessible, direct-injection spark ignition (DISI) engine using OH planar laser-induced fluorescence (PLIF) imaging. Homogeneous and stratified operation was achieved by employing either early or late injection timing strategies during the intake or compression stroke respectively. Planar LIF OH images obtained revealed that for stratified operation, the 3D structure of the combustion zone is highly inhomogeneous and is predominantly due to high fuel concentration gradients which are formed as a result of local fuel mixture stratification. The images reveal a combustion structure which suggests that the flame propagation pathway is ultimately determined by the presence of these local fuel mixture inhomogeneities.
Technical Paper

Study of the Correlation Between Mixing and Auto-Ignition Processes in High Pressure Diesel Jets

2007-04-16
2007-01-0650
A tracer laser-induced fluorescence (LIF) technique for the visualisation of fuel distribution in the presence of oxygen was developed and then used sequentially with high speed chemiluminescence imaging to study the correlation between the mixing and auto-ignition processes of high pressure Diesel jets. A single hole common rail Diesel injector allowing high injection pressures up to 150MPa was used. The reacting fuel spray was observed in a high pressure, high temperature cell that reproduces the thermodynamic conditions which exist in the combustion chamber of a Diesel engine during injection. Both free jet and flat wall impinging jet configurations were studied. Several tracers were first considered with the objective of developing a tracer-LIF technique in the presence of oxygen. 5-nonanone was selected for its higher fluorescence efficiency.
Technical Paper

Port Fuel Injection and Combustion Simulation of a Racing Engine

2003-05-19
2003-01-1845
The short time available for injection and mixing in high-speed engines requires an accurate modeling of the fuel related processes to obtain a valuable in-cylinder charge description, and then a good combustion performance prediction. An advanced version of the KMB code of IFP has been used to compute a racing engine. It includes a fitted on experiments spray model, a comprehensive wall-film model, the AKTIM ignition and ECFM combustion models. A major difficulty was the necessity to compute numerous cycles before reaching a cycle-independent solution. A procedure has been defined to minimize calculation time. Another difficulty was the high concentration of liquid in some zones, which requested a careful meshing. Effects such as the influence of the strong acoustic waves on the spray dynamic, the wall wetting effects on the engine time response, injector position on fuel distribution in the cylinder, charge homogeneity on the combustion process have been investigated.
Technical Paper

Observer Design for Torque Balancing on a DI Engine

2004-03-08
2004-01-1370
Torque balancing for diesel engines is important to eliminate generated vibrations and to correct injected quantity disparities between cylinders. The vibration phenomenon is important at low engine speed and at idling. To estimate torque production from each cylinders, the instantaneous engine speed from the crankshaft is used. Currently, an engine speed measurement every 45° crank angle is sufficient to estimate torque balance and to correct it in an adaptive manner by controlling the mass injected into each cylinder. The contribution of this article is to propose a new approach of estimation of the indicated torque of a DI engine based on a nonstationary linear model of the system. On this model, we design a linear observer to estimate the indicated torque produced by each cylinder. In order to test it, this model has been implemented on a HiL platform and tested on simulation and with experimental data.
Technical Paper

Analysis of HC Emissions on Single Cylinder During Transient Conditions

2004-03-08
2004-01-0981
For studying simultaneously and early in the development process the effects of engine design parameters and of control strategies on HC emissions, a methodology has been set up to reproduce on a gasoline single-cylinder engine the beginning of MVEG cycle. This methodology uses different fuels and analysis tools to assess the HC sources. Oil and water are heated to follow the thermal behavior of a multi cylinder engine. A fast prototyping system is used to control the engine. Special attention has been paid to take into account the acoustic effect on the air feeding. The main tendencies observed in stabilized conditions are similar to transient test conditions with GDI engine. Wall wetting appears as the main source of HC emission in case of direct injection. Transient effects are especially sensitive during cold conditions.
Technical Paper

Development and Validation of a Knock Model in Spark Ignition Engines Using a CFD code

2002-10-21
2002-01-2701
Currently, the development of higher specific output and higher efficiency S.I. engines requires better control and knowledge of knock mechanisms. As it is not easily possible to instrument an engine to determine the beginning of fuel auto-ignition, knock modeling by means of 3D CFD simulation, can be a powerful tool to understand and try to avoid this phenomenon [1, 2, 3]. The objectives of the work described in this paper are to develop and validate a simple model of auto-ignition. This model, developed at IFP, is implemented in the 3D CFD code KMB [4, 5]. It is based on an AnB model [6, 7] which creates a ‘precursor’ species transported with the flow in the combustion chamber. When its concentration reaches a limiting value, the auto-ignition phenomenon occurs.
X