Refine Your Search

Topic

Author

Search Results

Journal Article

Advanced Injection Strategies for Controlling Low-Temperature Diesel Combustion and Emissions

2009-06-15
2009-01-1962
The simultaneous reduction of engine-out nitrogen oxide (NOx) and particulate emissions via low-temperature combustion (LTC) strategies for compression-ignition engines is generally achieved via the use of high levels of exhaust gas recirculation (EGR). High EGR rates not only result in a drastic reduction of combustion temperatures to mitigate thermal NOx formation but also increases the level of pre-mixing thereby limiting particulate (soot) formation. However, highly pre-mixed combustion strategies such as LTC are usually limited at higher loads by excessively high heat release rates leading to unacceptable levels of combustion noise and particulate emissions. Further increasing the level of charge dilution (via EGR) can help to reduce combustion noise but maximum EGR rates are ultimately restricted by turbocharger and EGR path technologies.
Journal Article

A Comparison of Combustion and Emissions Behaviour in Optical and Metal Single-Cylinder Diesel Engines

2009-06-15
2009-01-1963
Single cylinder optical engines are used for internal combustion (IC) engine research as they allow for the application of qualitative and quantitative non-intrusive, diagnostic techniques to study in-cylinder flow, mixing, combustion and emissions phenomena. Such experimental data is not only important for the validation of computational models but can also provide a detailed insight into the physical processes occurring in-cylinder which is useful for the further development of new combustion strategies such as gasoline homogeneous charge compression ignition (HCCI) and Diesel low temperature combustion (LTC). In this context, it is therefore important to ensure that the performance of optical engines is comparable to standard all-metal engines. A comparison of optical and all-metal engine combustion and emissions performance was performed within the present study.
Journal Article

Effects of Methane/Hydrogen Blends On Engine Operation: Experimental And Numerical Investigation of Different Combustion Modes

2010-10-25
2010-01-2165
The introduction of alternative fuels is crucial to limit greenhouse gases. CNG is regarded as one of the most promising clean fuels given its worldwide availability, its low price and its intrinsic properties (high knocking resistance, low carbon content...). One way to optimize dedicated natural gas engines is to improve the CNG slow burning velocity compared to gasoline fuel and allow lean burn combustion mode. Besides optimization of the combustion chamber design, hydrogen addition to CNG is a promising solution to boost the combustion thanks to its fast burning rate, its wide flammability limits and its low quenching gap. This paper presents an investigation of different methane/hydrogen blends between 0% and 40 vol. % hydrogen ratio for three different combustion modes: stoichiometric, lean-burn and stoichiometric with EGR.
Journal Article

Cold Start on Diesel Engines: Effect of Fuel Characteristics

2010-05-05
2010-01-1506
Faced with the need to reduce greenhouse gas emissions, diesel engines present the advantage of having low CO₂ emission levels compared to spark-ignited engines. Nevertheless, diesel engines still suffer from the fact that they emit pollutants and, particularly nitrogen oxides (NOx) and particulates (PM). One of the most promising ways to meet this challenge is to reduce the compression ratio (CR). However a current limitation in reducing the diesel CR is cold start requirements. In this context, the fuel characteristics such as the cetane number, which represents ignition, and volatility could impact cold start. That is why a matrix of 8 fuels was tested. The cetane number ranges from 47.3 to 70.9 and the volatility, represented by the temperature necessary to distillate 5% of the product (T5%), ranges from 173 to 198°C. The engine tests were carried out at -25°C, on a common rail 4-cylinder diesel engine.
Journal Article

Towards an Innovative Combination of Natural Gas and Liquid Fuel Injection in Spark Ignition Engines

2010-05-05
2010-01-1513
In order to address the CO₂ emissions issue and to diversify the energy for transportation, CNG (Compressed Natural Gas) is considered as one of the most promising alternative fuels given its high octane number. However, gaseous injection decreases volumetric efficiency, impacting directly the maximal torque through a reduction of the cylinder fill-up. To overcome this drawback, both independent natural gas and gasoline indirect injection systems with dedicated engine control were fitted on a RENAULT 2.0L turbocharged SI (Spark Ignition) engine and were adapted for simultaneous operation. The main objective of this innovative combination of gas and liquid fuel injections is to increase the volumetric efficiency without losing the high knocking resistance of methane.
Journal Article

Optimization of a Euro 5 Vehicle Powered by an Ethanol Based Diesel Fuel

2010-05-05
2010-01-1520
Diversifying energy resources and reducing greenhouse gas emissions are key priorities in the forthcoming years for the automotive industry. Currently, among the different solutions, sustainable biofuels are considered as one of the most attractive answer to these issues. This paper deals with the vehicle application of an innovative diesel fuel formulation using Ethanol to tackle these future challenges. The main goal is to better understand the impact of using biofuel blends on engine behavior, reliability and pollutants emissions. This alternative oxygenated fuel reduces dramatically particulate matter (PM) emissions; this paves the way to improve the NOx/PM/CO₂ trade-off. Another major interest is to avoid adding a particulate filter in the exhaust line and to avoid modifying powertrain and vehicle hardware and therefore to minimize the overall cost to fulfill upcoming emission regulations.
Journal Article

Impact of Fuel Properties on the Performances and Knock Behaviour of a Downsized Turbocharged DI SI Engine - Focus on Octane Numbers and Latent Heat of Vaporization

2009-04-20
2009-01-0324
Facing the CO2 emission reduction challenge, the combination of downsizing and turbocharging appears as one of the most promising solution for the development of high efficiency gasoline engines. In this context, as knock resistance is a major issue, limiting the performances of turbocharged downsized gasoline engines, fuel properties are more than ever key parameters to achieve high performances and low fuel consumption's levels. This paper presents a combustion study carried out into the GSM consortium of fuel quality effects on the performances of a downsized turbocharged Direct Injection SI engine. The formulation of two adapted fuel matrix has allowed to separate and evaluate the impacts of three major fuel properties: Research Octane Number (RON), Motor Octane Number (MON) and Latent Heat of Vaporization (LHV). Engine tests were performed on a single cylinder engine at steady state operating condition.
Journal Article

Using Multiple Injection Strategies in Diesel Combustion: Potential to Improve Emissions, Noise and Fuel Economy Trade-Off in Low CR Engines

2008-04-14
2008-01-1329
In former high compression ratio Diesel engines a single injection was used to introduce the fuel into the combustion chamber. With actual direct injection engines which exhibit a compression ratio between 17:1 and 18:1 single or multiple early injections called “pilot injections” are also added in order to reduce the combustion noise. For after-treatment reasons a late injection during the expansion stroke named “post injection” may also be used in some operating conditions. Investigations have been conducted on lower compression ratio Diesel engine and in high EGR rate operating conditions to evaluate the benefits of multiple injection strategies to improve the trade off between engine emissions, noise and fuel economy.
Journal Article

A 0D Phenomenological Approach to Model Diesel HCCI Combustion with Multi-Injection Strategies Using Probability Density Functions and Detailed Tabulated Chemistry

2009-04-20
2009-01-0678
More and more stringent restrictions concerning the pollutant emissions of ICE (Internal Combustion Engines) constitute a major challenge for the automotive industry. New combustion strategies such as LTC (Low Temperature Combustion), PCCI (Premixed Controlled Compression Ignition) or HCCI (Homogeneous Charge Compression Ignition) are promising solutions to achieve the imposed emission standards. They permit low NOx and soot emissions via a lean and highly diluted combustion regime, thus assuring low combustion temperatures. In next generation of ICE, new technologies allow the implementation of complex injection strategies in order to optimize the combustion process. This requires the creation of numerical tools adapted to these new challenges. This paper presents a 0D Diesel HCCI combustion model based on a physical 3D CFD (Computational Fluid Dynamics) approach.
Technical Paper

A New 0D Approach for Diesel Combustion Modeling Coupling Probability Density Function with Complex Chemistry

2006-10-16
2006-01-3332
The model presented in this paper is an original contribution for two main mechanisms involved in a Diesel combustion chamber: the micro-mixing and the combustion heat release. The micro-mixing phenomenon is modelled thanks to the presumed probability density function theory adapted to the 0D combustion modeling issues in order to take into account the stratification of air / fuel ratio around the spray. The combustion heat release is obtained from complex chemistry look-up tables. These tables are issued from a dedicated use of the Flame Prolongation of ILDM theory and allow a large range of combustion conditions since it includes high EGR rates. Moreover, the spray model including evaporation and turbulent macro-mixing is based on the well-known Siebers theory.
Technical Paper

A Detailed Well to Wheel Analysis of CNG Compared to Diesel Oil and Gasoline for the French and the European Markets

2007-01-23
2007-01-0037
Pollutants emissions from transportation have become a major focus of environmental concerns in the last decades. Many alternative fuels are under consideration, among which Natural Gas as fossil resource offering an advantageous potential to reduce local emissions. The European Commission has set an objective of 10% of Natural Gas consumption for the transport sector by 2020. In a sustainable development view, both vehicle emissions and energy supply chain analysis from well to wheel must be addressed. Even if the main focus today is on CO2 emissions, it is interesting to evaluate the pollutant emissions of the whole Well to Wheel chain. Besides, as the potential of reducing pollutant emissions of vehicle (due to the improvement of engines and severization of norms), looking at pollutant emissions of the Well to Tank part of the chain could show the possible further improvements. Former studies exist, comparing Natural Gas to conventional and non conventional fuels.
Technical Paper

AMT Control for a Mild-Hybrid Urban Vehicle with a Downsized Turbo-Charged CNG Engine

2007-04-16
2007-01-0286
Compressed natural gas (CNG) is considered as one of the most promising alternative fuels for transportation due to its ability to reduce greenhouse gas emissions (CO2, in particular) and its abundance. An earlier study from IFP has shown that CNG has a considerable potential when used as a fuel for a dedicated downsized turbo-charged SI engine on a small urban vehicle. To take further advantage of CNG assets, this approach can be profitably extended by adding a small secondary (electrical) power source to the CNG engine, thus hybridizing the powertrain. This is precisely the focus of the new IFP project, VEHGAN, which aims to develop a mild-hybrid CNG prototype vehicle based on a MCC smart car equipped with a reversible starter-alternator and ultra-capacitors (Valeo Starter Alternator Reversible System, StARS).
Technical Paper

A 3WCC Global Kinetic Model: A Calibration Method Using Laboratory Scale and Engine Test Bench Experiments

2008-04-14
2008-01-0453
A 3 way catalytic converter (3WCC) model based on a global kinetic model was developed and validated against laboratory scale and engine test bench experiments. Various equivalence ratios and temperatures were tested. A methodology was finalized and applied to calibrate the kinetic constants. Laboratory scale experiments were first used to characterize the reaction mechanism during light-off, including the way reduction and oxidation reactions begin and compete with each other when temperature increases. The numerical results are in good agreement with the laboratory scale light-off results. Also, when adapted to simulate the engine test bench experiments, the model is able to correctly reproduce both the light-off tests and the 3WCC conversion efficiency evolution versus equivalence ratio. A calibration method in two steps was thus established and successfully used. The combination of modeling with experimental work appeared to be a powerful tool to determine the reaction mechanism.
Technical Paper

Well to Wheels Analysis of Biofuels vs. Conventional Fossil Fuels : a Proposal for Greenhouse Gases and Energy Savings Accounting in the French Context

2008-04-14
2008-01-0673
The recent development of biofuel production worldwide is closely linked to GHG savings objectives and to regional agricultural policies. Many existing studies intend to evaluate the net non renewable energy and GHG savings associated to the various biofuel production pathways. However, there is no consensus on the results of those studies. The main explanations of variations among the results are the following: energy consumption and GHG emissions of the reference fossil pathway, data used for the representation of farming processes and biofuel production processes, accounting for carbon storage in agricultural soils, reference use of the land, choice of an allocation method in case of coproduction. There is a strong drive in the European Union for a certification on the sustainability of biofuel pathways.
Technical Paper

Ethanol as a Diesel Base Fuel: Managing the Flash Point Issue - Consequences on Engine Behavior

2009-06-15
2009-01-1807
Facing more and more stringent regulations, new solutions are developed to decrease pollutant emissions. One of them have shown promising and relevant results. It consists of the use of ethanol as a blending component for diesel fuel Nevertheless, the addition of ethanol to Diesel fuel affects some key properties such as the flash point. Consequently, Diesel blends containing ethanol become highly flammable at a temperature around ambient temperature. This study proposes to improve the formulation of ethanol based diesel fuel in order to avoid flash point drawbacks. First, a focus on physical and chemical properties is done for ethanol based diesel fuels with and without flash point improvement. Second, blends are tested on a passenger car diesel engine, under a wide operating range conditions from low load low speed up to maximum power. The main advantage of the ethanol based fuels generate low smoke level, that allows using higher EGR rate, thus leading to an important NOx decrease.
Technical Paper

Generating Thermal Conditions to Regenerate a DPF: Impact of the Reductant on the Performances of Diesel Oxidation Catalysts

2009-04-20
2009-01-1085
The influence of the type of fuel and the feeding means to a DOC, in order to regenerate a DPF, was investigated. Diesel fuel in cylinder late post-injection was compared to the injection in the exhaust line, through an exhaust port injector, of diesel fuel, B10 (diesel fuel containing 10% of esters) and gasoline. Diesel fuel exhaust injection resulted in a deteriorated conversion efficiency, while the incorporation of esters to the diesel fuel was demonstrated to have no influence. Gasoline exhaust injection led to less HC slip than diesel fuels. Temperature dynamics resulting from injection steps showed taught that the shorter the hydrocarbons (within the tested fuels), the slower the response. These differences can be caught by simple models, leading to interesting opportunities for the model-based control of the DPF inlet temperature during active regenerations.
Technical Paper

Tracer LIF Visualisation Studies of Piston-Top Fuel Films in a Wall-Guided, Low-NOx Diesel Engine

2008-10-06
2008-01-2474
Tracer laser induced fluorescence (LIF) imaging of piston-top fuel films has been performed within the combustion chamber of an optically-accessible, single cylinder Diesel engine. The first objective of the study was to adapt the tracer LIF technique so as to perform in-cylinder imaging of the fuel films under reacting (i.e. combustion) conditions. The results obtained in a wall-guided, combustion chamber operating under highly dilute, Diesel low temperature combustion (LTC) conditions reveal the significant presence of late-cycle piston-top fuel films. Furthermore, it is believed that these fuel films contribute to engine-out hydrocarbon (HC) emissions via a mechanism of flash boiling. An attempt was also made to evaluate the role of fuel volatility on fuel film lifetimes. This was achieved by using a 50/50 fuel mixture of two single component fuels whose boiling points correspond to moderately high and low volatility components of standard Diesel fuel.
Technical Paper

Effect of Fuel Characteristics on the Performances and Emissions of an Early-injection LTC / Diesel Engine

2008-10-06
2008-01-2408
New combustion processes like LTC (Low Temperature Combustion) that includes HCCI (Homogeneous Charge Compression Ignition), PCCI (Premixed Charge Compression Ignition), PPCI (Partial Premixed Compression Ignition)… are promising ways to reduce simultaneously NOx and PM. Nevertheless, these combustion processes can be used only on a limited part of the engine load and speed map. Therefore, it appeared interesting to assess how the fuel, through its characteristics, could enhance the operating range in such combustion processes. That was the aim of an international consortium carried out by IFP and supported by numerous industrial companies. First a specific procedure has been developed to compare the different fuels on a early injection HCCI single cylinder engine. Then, using this procedure, a matrix of fuels having different cetane numbers (CN = 40-63), volatilities and chemical compositions has been tested.
Technical Paper

Control-Oriented Mean-Value Model of a Fuel-Flexible Turbocharged Spark Ignition Engine

2010-04-12
2010-01-0937
Among the last years, environmental concerns have raised the interest for biofuels. Ethanol, blended with gasoline seems particularly suited for the operation of internal combustion engines, and has been in use for severals years in some countries. However, it has a strong impact on engine performance, which is emphasized on recent engine architectures, with downsizing through turbocharging and variable valve actuation. Taking all the benefits of ethanol-blended fuel thus requires an adaptation of the engine management system. This paper intends to assess the effect of gasoline-ethanol blending from this point of view, then to describe a mean-value model of a fuel-flexible turbocharged PFI-SI engine, which will serve as a basis for the development of control algorithms. The focus will be in this paper on ethanol content estimation in the blend, supported by both simulation and experimental results.
Technical Paper

Matching and Evaluating Methods for Euro 6 and Efficient Two-stage Turbocharging Diesel Engine

2010-04-12
2010-01-1229
While fuel efficiency has to be improved, future Diesel engine emission standards will further restrict vehicle emissions, particularly of nitrogen oxides. Increased in-cylinder filling is recognized as a key factor in addressing this issue, which calls for advanced design of air and exhaust gas recirculation circuits and high cooling capabilities. As one possible solution, this paper presents a 2-stage boosting breathing architecture, specially dedicated to improving the trade-off between emissions and fuel consumption instead of seeking to improve specific power on a large family vehicle equipped with a 1.6-liter Diesel engine. In order to do it, turbocharger matching was specifically optimized to minimize engine-out NOx emissions at part-load and consumption under common driving conditions. Engine speed and load were analyzed on the European driving cycle. The key operating points and associated upper boundary for NOx emission were identified.
X