Refine Your Search

Topic

Search Results

Technical Paper

Potential of a Production DI Two-Stroke Engine Adapted for Range Extender and Motorcycle Applications

2017-11-05
2017-32-0082
The main purpose of this paper will be to investigate if a small snowmobile gasoline Direct Injected (DI) two-stroke engine has the potential to be adapted for two other types of applications: as a range extender (REX) for electric vehicles and for a motorcycle application. For the REX application, the main requested specifications (NVH, lightweight, compactness, minimum production cost and easy maintenance), correspond well to the main features of DI 2-stroke engines. The potential of a modified production engine operating in part load ultra-low NOx Controlled Auto Ignition (CAI) to meet the Euro 6 emissions standards on the NEDC cycle has already been demonstrated in a previous paper. In the first part of this new paper, we will investigate which solutions can be used to maintain this potential with even stricter legislations based on Euro 6d, WLTP cycle and Real Driving Emissions (RDE).
Journal Article

HC-SCR on Silver-Based Catalyst: From Synthetic Gas Bench to Real Use

2011-08-30
2011-01-2092
The challenge for decreasing the emissions of compression ignition engines now remains mainly on NOx control. If the Lean NOx Trap (LNT) and Selective Catalytic Reduction by Urea (Urea-SCR) are very efficient, their extra-cost and management are a major issue for the OEMs. In that context, the selective catalytic reduction by hydrocarbons (HC-SCR) appears to be an interesting alternative solution, with a more limited NOx conversion efficiency but an easier packaging (diesel fuel as a reductant) and a limited price (reasonable coating cost / no PGM). In the framework of the RedNOx project, a prototype catalyst made of 2% silver on Alumina coated on cordierite was manufactured and tested on a synthetic gas bench. In parallel, an exhaust implementation study has been led to ensure the most suited conditions for injection. Thanks to SGB and simulation results, adapted engine tests have been designed and performed.
Technical Paper

How to Improve Light Duty Diesel Based on Heavy Duty Diesel Thermodynamic Analysis?

2013-04-08
2013-01-1623
The Diesel engine has now become a vital component of the transport sector, in view of its performance in terms of efficiency and therefore CO2 emissions some 25 % less than a traditional gasoline engine, its main competitor. However, the introduction of more and more stringent regulations on engine emissions (NOx, PM) requires complex after-treatment systems and combustion strategies to decrease pollutant emissions (regeneration strategies, injection strategies, …) with some penalty in fuel consumption. It becomes necessary to find new ways to improve the Diesel efficiency in order to maintain its inherent advantage. In the present work, we are looking for strategies and technologies to reduce Diesel engine fuel consumption. Based on the observation that large Diesel engines have a better efficiency than the smaller ones, a detailed thermodynamic combustion analysis of one Heavy Duty (HD) engine and two Passenger car (PC) engines is performed to understand these differences.
Technical Paper

Optimal Online Energy Management for Diesel HEV: Robustness to Real Driving Conditions

2013-04-08
2013-01-1471
This paper addresses the robustness of an optimal online energy management for diesel hybrid electric vehicle (HEV). Optimal strategy is based on the Equivalent Consumption Minimization Strategy (ECMS). Optimal torque split between engine and electric motor is found by minimizing fuel consumption and Nitrogen Oxides (NOx) emissions. Online adaptation is made in order to ensure battery charge sustainability and good driveability when driving conditions are unknown. The strategy is tested in simulation over one hundred driving cycles representative of real-world conditions. Results obtained with the online strategy are compared with those of an offline optimal strategy (knowing the driving cycle a priori). Even if a slight degradation is noticed in comparison to optimal case, fuel economy and NOx reduction - provided by hybridization - are conserved with the online strategy.
Technical Paper

Towards Quantitative Prediction of Urea Thermo-Hydrolysis and Deposits Formation in Exhaust Selective Catalytic Reduction (SCR) Systems

2019-04-02
2019-01-0992
In order to assist in fast design cycle of Diesel engines selective catalytic reduction (SCR) exhaust systems, significant endeavor is currently being made to improve numerical simulation accuracy of urea thermo-hydrolysis. In this article, the achievements of a recently developed urea semi-detailed decomposition chemical scheme are assessed using three available databases from the literature. First, evaporation and thermo-hydrolysis of urea-water solution (UWS) single-droplets hanged on a thin thermocouple ring (127 μm) as well as on a thick quartz (275 μm), have been simulated at ambient temperature conditions ranging from 473K to 773K. It has been shown that the numerical results, in terms of evaporation rate and urea gasification, as well as droplet temperature history are very close to the experiments if the heat flux coming from the droplet support is properly accounted for.
Technical Paper

Oxidation Stability of Diesel/Biodiesel Blends: Impact of Fuels Physical-Chemical Properties over Ageing During Storage and Accelerated Oxidation

2015-09-01
2015-01-1930
Current and future engine technologies and fuels are mutually dependent. The increased use of alternative fuels has been linked to deterioration in performance of injectors, fuel filters and engines as a result of insoluble deposit formation. The present work aimed to study the impact of Diesel/biodiesel blends formulation (biodiesel feedstock and content) and temperature on the oxidation stability based on total acid number (TAN). The biofuels used in the fuel matrix were: rapeseed, soy and palm methyl esters (RME, SME and PME respectively). The Diesel/biodiesel blends were made with 0%v/v, 5%v/v, 10% v/v and 20%v/v of biodiesel blended with additive-free new Diesel. The oxidation stability of Diesel/biodiesel blends was to evaluate during 6 months fuels storage, under 20°C and 40°C, and fuels severe oxidation into a reactor vessel to better understand the parameters leading to fuel oxidation on-board.
Journal Article

Using Ethanol’s Double Octane Boosting Effect with Low RON Naphtha-Based Fuel for an Octane on Demand SI Engine

2016-04-05
2016-01-0666
The efficiency of spark ignition (SI) engines is usually limited by the occurrence of knock, which is linked to fuel octane number. If running the engine at its optimal efficiency requires a high octane number at high load, a lower octane number can be used at low load. Saudi Aramco, along with its long-term partner IFP Energies nouvelles, has been developing a synergistic fuel engine system where the engine is fed by fuel with an octane number adjusted in real time, on an as needed basis, while running at its optimal efficiency. Two major steps are identified to develop this “Octane on Demand” (OOD) concept: First, characterize the octane requirement needed to run the engine at its optimal efficiency over the entire map. Then, select the best dual fuel combination, including a base fuel and an octane booster to fit this concept.
Technical Paper

Direct Injection of CNG on High Compression Ratio Spark Ignition Engine: Numerical and Experimental Investigation

2011-04-12
2011-01-0923
CNG is one of the most promising alternate fuels for passenger car applications. CNG is affordable, is available worldwide and has good intrinsic properties including high knock resistance and low carbon content. Usually, CNG engines are developed by integrating CNG injectors in the intake manifold of a baseline gasoline engine, thereby remaining gasoline compliant. However, this does not lead to a bi-fuel engine but instead to a compromised solution for both Gasoline and CNG operation. The aim of the study was to evaluate the potential of a direct injection spark ignition engine derived from a diesel engine core and dedicated to CNG combustion. The main modification was the new design of the cylinder head and the piston crown to optimize the combustion velocity thanks to a high tumble level and good mixing. This work was done through computations. First, a 3D model was developed for the CFD simulation of CNG direct injection.
Technical Paper

State of the Art and Analysis of Control Oriented NOx Models

2012-04-16
2012-01-0723
Future pollutant emissions legislations are expected to be increasingly stringent. To reduce Nitrogen Oxides (NOx) emissions produced by Diesel engines, advanced combustion technologies - like Low Temperature Combustion (LTC) -, vehicle hybridization and NOx after-treatment systems - such as Selective Catalytic Reduction (SCR) systems - can be considered, leading to a growing demand for NOx models. In this paper, we present a state-of-art of the different existing NOx models, from the black-boxes to the three-dimensional Computational Fluid Dynamics (CFD) codes. A way to classify these models is proposed. The paper also introduces the current applications for each subgroup of models. Then, a black-box and two grey-box NOx models are studied regarding their accuracy and their sensitivity to model inputs. These models are validated for two Diesel engines on steady-state operating points as well as on transient operations. The semi-physical models accurately predict NOx emissions.
Technical Paper

Experimental Characterization of SCR DeNOx-Systems: Visualization of Urea-Water-Solution and Exhaust Gas Mixture

2014-04-01
2014-01-1524
The selective catalytic reduction (SCR) based on urea water solution (UWS) is an effective way to reduce nitrogen oxides (NOx) emitted by engines. The high potential offered by this solution makes it a promising way to meet the future stringent exhaust gas standards (Euro6 and Tier2 Bin5). UWS is injected into the exhaust upstream of an SCR catalyst. The catalyst works efficiently and durably if the spray is completely vaporized and thoroughly mixed with the exhaust gases before entering. Ensuring complete vaporization and optimum mixture distribution in the exhaust line is challenging, especially for compact exhaust lines. Numerous parameters affect the degree of mixing: urea injection pressure and spray angle, internal flow field (fluid dynamics), injector location …. In order to quantify the mixture quality (vaporization, homogeneity) upstream of the SCR catalyst, it is proposed to employ non intrusive optical diagnostics techniques such as laser induced fluorescence (LIF).
Technical Paper

Modeling of a Thermal Management Platform of an Automotive D.I Diesel Engine to Predict the Impact of Downsizing and Hybridization during a Cold Start

2014-04-01
2014-01-0657
Thermal management is a key issue to minimize fuel consumption while dealing with pollutant emissions. It paves the way for developing new methods and tools in order to assess the effects of warm up phase with different drivetrains architectures and to define the most suitable solution to manage oil and coolant temperatures. DEVICE (Downsized hybrid Diesel Engine for Very low fuel ConsumptIon and CO2 Emissions) project consists in designing hybrid powertrain to cut off significantly CO2 emissions. It combines a 2-cylinder engine with an electric motor and a 7-gear dual clutch transmission. Hybridization and downsizing offer a great improvement of fuel economy and it is valuable to study their effects on thermal management. Hence, a dedicated AMESim platform is developed to model the fluids temperatures as well as the energy balance changes due to the powertrain architecture.
Technical Paper

System Optimization for a 2-Stroke Diesel Engine with a Turbo Super Configuration Supporting Fuel Economy Improvement of Next Generation Engines

2014-11-11
2014-32-0011
The objective of this paper is to present the results of the GT Power calibration with engine test results of the air loop system technology down selection described in the SAE Paper No. 2012-01-0831. Two specific boosting systems were identified as the preferred path forward: (1) Super-turbo with two speed Roots type supercharger, (2) Super-turbo with centrifugal mechanical compressor and CVT transmission both downstream a Fixed Geometry Turbine. The initial performance validation of the boosting hardware in the gas stand and the calibration of the GT Power model developed is described. The calibration leverages data coming from the tests on a 2 cylinder 2-stroke 0.73L diesel engine. The initial flow bench results suggested the need for a revision of the turbo matching due to the big gap in performance between predicted maps and real data. This activity was performed using Honeywell turbocharger solutions spacing from fixed geometry waste gate to variable nozzle turbo (VNT).
Journal Article

Optical Investigation of Dual-fuel CNG/Diesel Combustion Strategies to Reduce CO2 Emissions

2014-04-01
2014-01-1313
Dual-fuel combustion strategies combining a premixed charge of natural gas and a pilot injection of diesel fuel offer the potential to reduce CO2 emissions as a result of the high Hydrogen/Carbon (H/C) ratio of methane gas. Moreover, the high octane number of methane means that dual-fuel combustion strategies can be employed on compression ignition engines without the need to vary the engine compression ratio, thereby significantly reducing the cost of engine hardware modifications. The aim of this investigation is to explore the fundamental combustion phenomena occurring when methane is ignited with a pilot injection of diesel fuel. Experiments were performed on a single-cylinder optical research engine which is typical of modern, light-duty diesel engines. A high-speed digital camera recorded time-resolved combustion luminosity and an intensified CCD camera was used for single-cycle OH*chemiluminescence imaging.
Journal Article

Stabilization of Highly Diluted Gasoline Direct Injection Engine using Innovative Ignition Systems

2014-10-13
2014-01-2598
Dilution is a promising way to improve fuel economy of Spark-Ignited (SI) gasoline engines. In this context, influence of innovative ignition systems on the dilution acceptance of a 400cc optical GDI engine has been studied. Several systems were tested and compared to a conventional coil: a dual-coil system and two nanosecond scaled plasma generators. Two operating points were studied: 2.8bar IMEP (net) at 2000rpm and 9bar IMEP (net) at 1200rpm. Two diluents were evaluated: real EGR and air (lean combustion). High-speed imaging at frequency up to 10kHz was performed to visualize both spark and combustion initiation and propagation. Voltage and current were measured to infer the energy deposited in the spark plug gap. The dual-coil DCO™ system and the nanosecond multi-pulse plasma generator at their maximum power showed an ability to extend the dilution range of the engine.
Journal Article

On the Effects of EGR on Spark-Ignited Gasoline Combustion at High Load

2014-10-13
2014-01-2628
EGR dilution is a promising way to improve fuel economy of Spark-Ignited (SI) gasoline engines. In particular, at high load, it is very efficient in mitigating knock at low speed and to decrease exhaust temperature at high speed so that fuel enrichment can be avoided. The objective of this paper is to better understand the governing mechanisms implied in EGR-diluted SI combustion at high load. For this purpose, measurements were performed on a modern, single-cylinder GDI engine (high tumble value, multi-hole injector, central position). In addition 0-D and 1-D Chemkin simulations (reactors and flames) were used to complete the engine tests so as to gain a better understanding of the physical mechanisms. EGR benefits were confirmed and characterized at 19 bar IMEP: net ISFC could be reduced by 17% at 1200rpm and by 6% at 5000rpm. At low speed, knock mitigation was the main effect, improving the cycle efficiency by a better combustion phasing.
Journal Article

Experimental Study of the Impact of Diesel/Biodiesel Blends Oxidation on the Fuel Injection System

2014-10-13
2014-01-2767
The stability of Diesel/Biodiesel blends can play an important role in deposits formation inside the fuel injection system (FIS). The impact of the stability of FAME/Diesel fuel blends on lacquer deposits formation and on the behavior and reliability of the FIS was investigated using blends of Rapeseed and Soybean methyl esters (RME, SME) and conventional Diesel fuel (volume fractions of RME and SME range from 0 to 20%v/v). Fuels were aged under accelerated conditions and tested on an injection test rig according to an operating cycle developed to provoke injector needle blocking. The soaking duration was found to affect injector fouling. A relationship between the injector fouling tendency and the fuel stability was established. Under current test condition, injectors fouling increased with fuel oxidation measured with Total-Acid-Number.
Journal Article

Simulation and Optical Diagnostics to Characterize Low Octane Number Dual Fuel Strategies: a Step Towards the Octane on Demand Engine

2016-10-17
2016-01-2164
Reduction of CO2 emissions is becoming one of the great challenges for future gasoline engines. Downsizing is one of the most promising strategies to achieve this reduction, though it facilitates occurrence of knocking. Therefore, downsizing has to be associated with knock limiting technologies. The aim of the current research program is to adapt the fuel Research-Octane-Number (RON) injected in the combustion chamber to prevent knock occurrence and keep combustion phasing at optimum. This is achieved by a dual fuel injection strategy, involving a low-RON naphtha-based fuel (Naphtha, RON 71) and a high-RON octane booster (Ethanol, RON107). The ratio of fuel quantity on each injector is adapted to fit the RON requirement as a function of engine operating conditions. Hence, it becomes crucial to understand and predict the mixture preparation, to quantify its spatial and cycle-to-cycle variations and to apprehend the consequences on combustion behavior - knock especially.
Technical Paper

Diesel Oxidation Catalyst and HC Investigations of a Low RON Gasoline Fuel in a Compression Ignition Engine

2017-10-08
2017-01-2405
Fuels from crude oil are the main energy vector used in the worldwide transport sector. But conventional fuel and engine technologies are often criticized, especially Diesel engines with the recent “Diesel gate”. Engine and fuel co-research is one of the main leverage to reduce both CO2 footprint and criteria pollutants in the transport sector. Compression ignition engines with gasoline-like fuels are a promising way for both NOx and particulate emissions abatement while keeping lower tailpipe CO2 emissions from both combustion process, physical and chemical properties of the low RON gasoline. To introduce a new fuel/engine technology, investigation of pollutants and After-Treatment Systems (ATS) is mandatory. Previous work [1] already studied soot behavior to define the rules for the design of the Diesel Particulate Filter (DPF) when used with a low RON gasoline in a compression ignition engine.
Technical Paper

Sensitivity of SCR Control Strategies to Diesel Exhaust Fluid Quality: A Simulation Study

2015-04-14
2015-01-1051
This paper presents the evaluation of the impact of Diesel Exhaust Fluid (DEF) quality on the behavior of a controlled SCR system. Proper control of the Selective Catalytic Reduction system is crucial to fulfill NOx emissions standards of modern Diesel engines. Today, the urea concentration of DEF is not considered as a control system input. Moreover, Urea Quality Sensors (UQS) are now available to provide real time information of Diesel Exhaust Fluid quality. The impact of percent urea from 20 to 36% on the NOx emissions of a passenger car 2.2L Diesel engine is calculated using a reference SCR model and a reference SCR control tool in multiple NEDC transient conditions. Several control tunings are tested with different levels of feedback. Ammonia slip levels are also calculated.
Technical Paper

Experimental Investigation of Novel Ammonia Mixer Designs for SCR Systems

2018-04-03
2018-01-0343
Meeting Euro 6d NOx emission regulations lower than 80 mg/km for light duty diesel (60 mg/km gasoline) vehicles remains a challenge, especially during cold-start tests at which the selective catalyst reduction (SCR) system does not work because of low exhaust gas temperatures (light-off temperature around 200 °C). While several exhaust aftertreatment system (EATS) designs are suggested in literature, solutions with gaseous ammonia injections seem to be an efficient and cost-effective way to enhance the NOx abatement at low temperature. Compared to standard SCR systems using urea water solution (UWS) injection, gaseous NH3 systems allow an earlier injection, prevent deposit formation and increase the NH3 content density. However non-uniform ammonia mixture distribution upstream of the SCR catalyst remains an issue. These exhaust gas/ NH3 inhomogeneities lead to a non-optimal NOx reduction performance, resulting in higher than expected NOx emissions and/or ammonia slip.
X