Refine Your Search

Topic

Author

Search Results

Journal Article

Stabilization of Highly Diluted Gasoline Direct Injection Engine using Innovative Ignition Systems

2014-10-13
2014-01-2598
Dilution is a promising way to improve fuel economy of Spark-Ignited (SI) gasoline engines. In this context, influence of innovative ignition systems on the dilution acceptance of a 400cc optical GDI engine has been studied. Several systems were tested and compared to a conventional coil: a dual-coil system and two nanosecond scaled plasma generators. Two operating points were studied: 2.8bar IMEP (net) at 2000rpm and 9bar IMEP (net) at 1200rpm. Two diluents were evaluated: real EGR and air (lean combustion). High-speed imaging at frequency up to 10kHz was performed to visualize both spark and combustion initiation and propagation. Voltage and current were measured to infer the energy deposited in the spark plug gap. The dual-coil DCO™ system and the nanosecond multi-pulse plasma generator at their maximum power showed an ability to extend the dilution range of the engine.
Journal Article

On the Effects of EGR on Spark-Ignited Gasoline Combustion at High Load

2014-10-13
2014-01-2628
EGR dilution is a promising way to improve fuel economy of Spark-Ignited (SI) gasoline engines. In particular, at high load, it is very efficient in mitigating knock at low speed and to decrease exhaust temperature at high speed so that fuel enrichment can be avoided. The objective of this paper is to better understand the governing mechanisms implied in EGR-diluted SI combustion at high load. For this purpose, measurements were performed on a modern, single-cylinder GDI engine (high tumble value, multi-hole injector, central position). In addition 0-D and 1-D Chemkin simulations (reactors and flames) were used to complete the engine tests so as to gain a better understanding of the physical mechanisms. EGR benefits were confirmed and characterized at 19 bar IMEP: net ISFC could be reduced by 17% at 1200rpm and by 6% at 5000rpm. At low speed, knock mitigation was the main effect, improving the cycle efficiency by a better combustion phasing.
Technical Paper

Impacts of Ethanol Level and Aromatic Hydrocarbon Structure in the Fuel on the Particle Emissions from a Gasoline Direct Injection Vehicle

2020-09-15
2020-01-2194
The recent particle number limits for a spark ignition engine combined with the real driving emissions (RDE) compliance have motivated the need for a better understanding of the effect of the gasoline fuel composition on the particle emissions. More particularly, the fundamental role of high boiling point components and heavy aromatics on particle emissions was highlighted in several literature works. In addition, works driven by the European Renewable Energy Directive are underway in order to explore the feasibility of an increased amount of sustainable Biofuels in Gasoline. Already widely distributed, ethanol is a clear candidate to such an increase. In this context, the present work aims to understand the effect of ethanol addition and aromatics composition on particulate emissions. Vehicle tests were performed over the Worldwide Harmonized Light Vehicles Test Cycle (WLTC) using a Euro 6c model without a Gasoline Particulate Filter (GPF) and a Euro 6d-Temp one equipped with a GPF.
Journal Article

Using Ethanol’s Double Octane Boosting Effect with Low RON Naphtha-Based Fuel for an Octane on Demand SI Engine

2016-04-05
2016-01-0666
The efficiency of spark ignition (SI) engines is usually limited by the occurrence of knock, which is linked to fuel octane number. If running the engine at its optimal efficiency requires a high octane number at high load, a lower octane number can be used at low load. Saudi Aramco, along with its long-term partner IFP Energies nouvelles, has been developing a synergistic fuel engine system where the engine is fed by fuel with an octane number adjusted in real time, on an as needed basis, while running at its optimal efficiency. Two major steps are identified to develop this “Octane on Demand” (OOD) concept: First, characterize the octane requirement needed to run the engine at its optimal efficiency over the entire map. Then, select the best dual fuel combination, including a base fuel and an octane booster to fit this concept.
Journal Article

Air Entrainment in Diesel-Like Gas Jet by Simultaneous Flow Velocity and Fuel Concentration Measurements, Comparison of Free and Wall Impinging Jet Configurations

2011-08-30
2011-01-1828
The air entrainment process of diesel-like gas jet was studied by simultaneous measurements of concentration and velocity fields. A high pressure gas jet was used to simulate diesel injection conditions. The injection mass flow rate was similar to that of typical diesel injection. The experiments were performed in a high pressure vessel at typical ambient gas density of diesel engine during spray injection. The ambient gas density was varied from 25 to 30 kg/m₃ and three nozzle diameters, 0.2, 0.35 and 0.5 mm were used. Both free and wall-impinging jet configurations were investigated by combining Laser-Induced Fluorescence (LIF) and Particle Image Velocimetry (PIV) to obtain simultaneous planar measurements of concentration and velocity. Fuel concentration fields were used to define the edges of the jet and allow an accurate determination of the air entrainment rate both in free and wall-impinging configurations.
Journal Article

Energy Management Strategy and Optimal Hybridization Level for a Diesel HEV

2012-04-16
2012-01-1019
The design and the supervision of hybrid electric vehicles (HEV) are strongly coupled. The mutual influence between the optimal components sizing and the optimal operating points choice makes the problem complex. This was previously exposed in literature for spark ignition (SI) HEV. In this paper, we address the same issue for diesel HEV. In this case, the energy management strategy must take nitrogen oxides (NOx) emissions into account in addition to fuel consumption. This paper presents an optimal supervision strategy and its impact on the electric components sizing. The energy management strategy is based on the equivalent consumption minimization strategy (ECMS) using Pontryagin's minimum principle. It allows an adjustable trade-off between NOx and fuel consumption to be minimized. It was validated experimentally with a hardware-in-the-loop test bed.
Journal Article

Simulation and Optical Diagnostics to Characterize Low Octane Number Dual Fuel Strategies: a Step Towards the Octane on Demand Engine

2016-10-17
2016-01-2164
Reduction of CO2 emissions is becoming one of the great challenges for future gasoline engines. Downsizing is one of the most promising strategies to achieve this reduction, though it facilitates occurrence of knocking. Therefore, downsizing has to be associated with knock limiting technologies. The aim of the current research program is to adapt the fuel Research-Octane-Number (RON) injected in the combustion chamber to prevent knock occurrence and keep combustion phasing at optimum. This is achieved by a dual fuel injection strategy, involving a low-RON naphtha-based fuel (Naphtha, RON 71) and a high-RON octane booster (Ethanol, RON107). The ratio of fuel quantity on each injector is adapted to fit the RON requirement as a function of engine operating conditions. Hence, it becomes crucial to understand and predict the mixture preparation, to quantify its spatial and cycle-to-cycle variations and to apprehend the consequences on combustion behavior - knock especially.
Journal Article

HC-SCR on Silver-Based Catalyst: From Synthetic Gas Bench to Real Use

2011-08-30
2011-01-2092
The challenge for decreasing the emissions of compression ignition engines now remains mainly on NOx control. If the Lean NOx Trap (LNT) and Selective Catalytic Reduction by Urea (Urea-SCR) are very efficient, their extra-cost and management are a major issue for the OEMs. In that context, the selective catalytic reduction by hydrocarbons (HC-SCR) appears to be an interesting alternative solution, with a more limited NOx conversion efficiency but an easier packaging (diesel fuel as a reductant) and a limited price (reasonable coating cost / no PGM). In the framework of the RedNOx project, a prototype catalyst made of 2% silver on Alumina coated on cordierite was manufactured and tested on a synthetic gas bench. In parallel, an exhaust implementation study has been led to ensure the most suited conditions for injection. Thanks to SGB and simulation results, adapted engine tests have been designed and performed.
Journal Article

Experimental Study of the Impact of Diesel/Biodiesel Blends Oxidation on the Fuel Injection System

2014-10-13
2014-01-2767
The stability of Diesel/Biodiesel blends can play an important role in deposits formation inside the fuel injection system (FIS). The impact of the stability of FAME/Diesel fuel blends on lacquer deposits formation and on the behavior and reliability of the FIS was investigated using blends of Rapeseed and Soybean methyl esters (RME, SME) and conventional Diesel fuel (volume fractions of RME and SME range from 0 to 20%v/v). Fuels were aged under accelerated conditions and tested on an injection test rig according to an operating cycle developed to provoke injector needle blocking. The soaking duration was found to affect injector fouling. A relationship between the injector fouling tendency and the fuel stability was established. Under current test condition, injectors fouling increased with fuel oxidation measured with Total-Acid-Number.
Technical Paper

A Fully-Analytical Fuel Consumption Estimation for the Optimal Design of Light- and Heavy-Duty Series Hybrid Electric Powertrains

2017-03-28
2017-01-0522
Fuel consumption is an essential factor that requires to be minimized in the design of a vehicle powertrain. Simple energy models can be of great help - by clarifying the role of powertrain dimensioning parameters and reducing the computation time of complex routines aiming at optimizing these parameters. In this paper, a Fully Analytical fuel Consumption Estimation (FACE) is developed based on a novel GRaphical-Analysis-Based fuel Energy Consumption Optimization (GRAB-ECO), both of which predict the fuel consumption of light- and heavy-duty series hybrid-electric powertrains that is minimized by an optimal control technique. When a drive cycle and dimensioning parameters (e.g. vehicle road load, as well as rated power, torque, volume of engine, motor/generators, and battery) are considered as inputs, FACE predicts the minimal fuel consumption in closed form, whereas GRAB-ECO minimizes fuel consumption via a graphical analysis of vehicle optimal operating modes.
Technical Paper

Study of ECN Injectors’ Behavior Repeatability with Focus on Aging Effect and Soot Fluctuations

2016-04-05
2016-01-0845
The Engine Combustion Network (ECN) has become a leading group concerning the experimental and computational analysis of engine combustion phenomena. In order to establish a coherent database for model validation, all the institutions participating in the experimental effort carry out tests at well-defined boundary conditions and using wellcharacterized hardware. In this framework, the reference Spray A injectors have produced different results even when tested in the same facility, highlighting that the nozzle employed and its fouling are important parameters to be accounted for. On the other hand, the number of the available Spray A injectors became an issue, due to the increasing number of research centers and simultaneous experiments taking place in the ECN community. The present work has a double aim: on the one hand, to seek for an appropriate methodology to “validate” new injectors for ECN experiments and to provide new hardware for the ECN community.
Technical Paper

The Impact of Intake Valve Dynamics on Knock Propensity in a Dual-Fuel SI Engine

2017-10-08
2017-01-2236
In this study, the impact of the intake valve timing on knock propensity is investigated on a dual-fuel engine which leverages a low octane fuel and a high octane fuel to adjust the fuel mixture’s research octane rating (RON) based on operating point. Variations in the intake valve timing have a direct impact on residual gas concentrations due to valve overlap, and also affect the compression pressure and temperature by altering the effective compression ratio (eCR). In this study, it is shown that the fuel RON requirement for a non-knocking condition at a fixed operating point can vary significantly solely due to variations of the intake valve timing. At 2000 rpm and 6 bar IMEP, the fuel RON requirement ranges from 80 to 90 as a function of the intake valve timing, and the valve timing can change the RON requirement from 98 to 104 at 2000 rpm and 14 bar IMEP.
Technical Paper

Combustion Optimization of a Multi-Cylinder CI Engine Running with a Low RON Gasoline Fuel Considering Different Air Loop and After-Treatment Configurations

2017-10-08
2017-01-2264
Recent work has demonstrated the potential of gasoline-like fuels to reduce NOx and particulate emissions when used in compression ignition engines. In this context, low research octane number (RON) gasoline, a refinery stream derived from the atmospheric crude oil distillation process, has been identified as a highly valuable fuel. In addition, thanks to its higher H/C ratio and energy content compared to diesel, CO2 benefits are also expected when used in such engines. In previous studies, different cetane number (CN) fuels have been evaluated and a CN 35 fuel has been selected. The assessment and the choice of the required engine hardware adapted to this fuel, such as the compression ratio, bowl pattern and nozzle design have been performed on a single cylinder compression-ignition engine.
Technical Paper

Diesel Oxidation Catalyst and HC Investigations of a Low RON Gasoline Fuel in a Compression Ignition Engine

2017-10-08
2017-01-2405
Fuels from crude oil are the main energy vector used in the worldwide transport sector. But conventional fuel and engine technologies are often criticized, especially Diesel engines with the recent “Diesel gate”. Engine and fuel co-research is one of the main leverage to reduce both CO2 footprint and criteria pollutants in the transport sector. Compression ignition engines with gasoline-like fuels are a promising way for both NOx and particulate emissions abatement while keeping lower tailpipe CO2 emissions from both combustion process, physical and chemical properties of the low RON gasoline. To introduce a new fuel/engine technology, investigation of pollutants and After-Treatment Systems (ATS) is mandatory. Previous work [1] already studied soot behavior to define the rules for the design of the Diesel Particulate Filter (DPF) when used with a low RON gasoline in a compression ignition engine.
Technical Paper

Potential of CN25 Naphtha-Based Fuel to Power Compression Ignition Engines

2016-04-05
2016-01-0765
Recent work has demonstrated the potential of gasoline-like fuels to reduce NOx and particulate emissions when used in Diesel engines. In this context, straight-run naphtha, a refinery stream directly derived from the atmospheric crude oil distillation process, has been identified as a highly valuable fuel. The current study is one step further toward naphtha-based fuel to power compression ignition engines. The potential of a cetane number 25 fuel (CN25), resulting from a blend of hydro-treated straight-run naphtha CN35 with unleaded non-oxygenated gasoline RON91 was assessed. For this purpose, investigations were conducted on multiple fronts, including experimental activities on an injection test bed, in an optically accessible vessel and in a single cylinder engine. CFD simulations were also developed to provide relevant explanations.
Technical Paper

Direct Injection of CNG on High Compression Ratio Spark Ignition Engine: Numerical and Experimental Investigation

2011-04-12
2011-01-0923
CNG is one of the most promising alternate fuels for passenger car applications. CNG is affordable, is available worldwide and has good intrinsic properties including high knock resistance and low carbon content. Usually, CNG engines are developed by integrating CNG injectors in the intake manifold of a baseline gasoline engine, thereby remaining gasoline compliant. However, this does not lead to a bi-fuel engine but instead to a compromised solution for both Gasoline and CNG operation. The aim of the study was to evaluate the potential of a direct injection spark ignition engine derived from a diesel engine core and dedicated to CNG combustion. The main modification was the new design of the cylinder head and the piston crown to optimize the combustion velocity thanks to a high tumble level and good mixing. This work was done through computations. First, a 3D model was developed for the CFD simulation of CNG direct injection.
Technical Paper

State of the Art and Analysis of Control Oriented NOx Models

2012-04-16
2012-01-0723
Future pollutant emissions legislations are expected to be increasingly stringent. To reduce Nitrogen Oxides (NOx) emissions produced by Diesel engines, advanced combustion technologies - like Low Temperature Combustion (LTC) -, vehicle hybridization and NOx after-treatment systems - such as Selective Catalytic Reduction (SCR) systems - can be considered, leading to a growing demand for NOx models. In this paper, we present a state-of-art of the different existing NOx models, from the black-boxes to the three-dimensional Computational Fluid Dynamics (CFD) codes. A way to classify these models is proposed. The paper also introduces the current applications for each subgroup of models. Then, a black-box and two grey-box NOx models are studied regarding their accuracy and their sensitivity to model inputs. These models are validated for two Diesel engines on steady-state operating points as well as on transient operations. The semi-physical models accurately predict NOx emissions.
Technical Paper

How to Improve Light Duty Diesel Based on Heavy Duty Diesel Thermodynamic Analysis?

2013-04-08
2013-01-1623
The Diesel engine has now become a vital component of the transport sector, in view of its performance in terms of efficiency and therefore CO2 emissions some 25 % less than a traditional gasoline engine, its main competitor. However, the introduction of more and more stringent regulations on engine emissions (NOx, PM) requires complex after-treatment systems and combustion strategies to decrease pollutant emissions (regeneration strategies, injection strategies, …) with some penalty in fuel consumption. It becomes necessary to find new ways to improve the Diesel efficiency in order to maintain its inherent advantage. In the present work, we are looking for strategies and technologies to reduce Diesel engine fuel consumption. Based on the observation that large Diesel engines have a better efficiency than the smaller ones, a detailed thermodynamic combustion analysis of one Heavy Duty (HD) engine and two Passenger car (PC) engines is performed to understand these differences.
Technical Paper

Numerical and Experimental Investigation of Combustion Regimes in a Dual Fuel Engine

2013-09-08
2013-24-0015
Among the new combustion concepts envisaged to meet future regulations, the Dual Fuel (DF) concept is considered to be an attractive strategy due to its potential to reduce CO2 emissions and engine-out pollutant emissions levels. A small quantity of high-cetane fuel (Diesel) is injected in the combustion chamber in order to ignite a homogeneous mixture of air and a highly volatile fuel (gasoline in our study). The DF concept has been shown to achieve improved engine thermal efficiency and low engine-out NOx and soot emissions. However, the physical mechanisms controlling DF combustion and in particular, determination of the predominant combustion regime(s) are not yet well understood. In this study, numerical simulations (CFD) and optical engine measurements are used to investigate Dual Fuel combustion.
Technical Paper

Optimal Online Energy Management for Diesel HEV: Robustness to Real Driving Conditions

2013-04-08
2013-01-1471
This paper addresses the robustness of an optimal online energy management for diesel hybrid electric vehicle (HEV). Optimal strategy is based on the Equivalent Consumption Minimization Strategy (ECMS). Optimal torque split between engine and electric motor is found by minimizing fuel consumption and Nitrogen Oxides (NOx) emissions. Online adaptation is made in order to ensure battery charge sustainability and good driveability when driving conditions are unknown. The strategy is tested in simulation over one hundred driving cycles representative of real-world conditions. Results obtained with the online strategy are compared with those of an offline optimal strategy (knowing the driving cycle a priori). Even if a slight degradation is noticed in comparison to optimal case, fuel economy and NOx reduction - provided by hybridization - are conserved with the online strategy.
X