Refine Your Search

Search Results

Viewing 1 to 14 of 14
Journal Article

Performance Assessment of a Multi-Functional Reactor Under Conventional and Advanced Combustion Diesel Engine Exhaust Conditions

2011-04-12
2011-01-0606
Current progress in the development of diesel engines substantially contributes to the reduction of NOx and Particulate Matter (PM) emissions but will not succeed to eliminate the application of Diesel Particulate Filters (DPFs) in the future. In the past we have introduced a Multi-Functional Reactor (MFR) prototype, suitable for the abatement of the gaseous and PM emissions of the Low Temperature Combustion (LTC) engine operation. In this work the performance of MFR prototypes under both conventional and advanced combustion engine operating conditions is presented. The effect of the MFR on the fuel penalty associated to the filter regeneration is assessed via simulation. Special focus is placed on presenting the performance assessment in combination with the existing differences in the morphology and reactivity of the soot particles between the different modes of diesel engine operation (conventional and advanced). The effect of aging on the MFR performance is also presented.
Technical Paper

Combined Particulate Matter and NOx Aftertreatment Systems for Stringent Emission Standards

2007-04-16
2007-01-1128
The HSDI Diesel engine contributes substantially to the decrease of fleet fuel consumption thus to the reduction of CO2 emissions. This results in the rising market acceptance which is supported by desirable driving performance as well as greatly improved NVH behavior. In addition to the above mentioned requirements on driving performance, fuel economy and NVH behavior, continuously increasing demands on emissions performance have to be met. From today's view the Diesel particulate trap presents a safe technology to achieve the required reduction of the particle emission of more than 95%. However, according to today's knowledge a further, substantial NOx engine-out emission reduction for the Diesel engine is counteracts with the other goal of reduced fuel consumption. To comply with current and future emission standards, Diesel engines will require DeNOx technologies.
Technical Paper

Evaluation of Modeling Approaches for NOx Formation in a Common-Rail DI Diesel Engine within the Framework of Representative Interactive Flamelets (RIF)

2008-04-14
2008-01-0971
Representative Interactive Flamelets (RIF) have proven successful in predicting Diesel engine combustion. The RIF concept is based on the assumption that chemistry is fast compared to the smallest turbulent time scales, associated with the turnover time of a Kolmogorov eddy. The assumption of fast chemistry may become questionable with respect to the prediction of pollutant formation; the formation of NOx, for example, is a rather slow process. For this reason, three different approaches to account for NOx emissions within the flamelet approach are presented and discussed in this study. This includes taking the pollutant mass fractions directly from the flamelet equations, a technique based on a three-dimensional transport equation as well as the extended Zeldovich mechanism. Combustion and pollutant emissions in a Common-Rail DI Diesel engine are numerically investigated using the RIF concept. Special emphasis is put on NOx emissions.
Technical Paper

Complex Air Path Management Systems and Necessary Controller Structures for Future High Dynamic Requirements

2009-05-13
2009-01-1616
The future worldwide emission regulations will request a drastic decrease of Diesel engine tailpipe emissions. Depending on the planned application and the real official regulations, a further strong decrease of engine out emissions is necessary, even though the utilized exhaust after-treatment systems are very powerful. To reduce NOx emissions internally, the external exhaust gas recirculation (EGR) is known as the most effective way. Due to the continuously increasing requirements regarding specific power, dynamic behavior and low emissions, future air path systems have to fulfill higher requirements and, consequently, become more and more complex, e.g. arrangements with a 2-stage turbo charging or 2-stage EGR system with different stages of cooling performance.
Technical Paper

Tailor-Made Fuels: The Potential of Oxygen Content in Fuels for Advanced Diesel Combustion Systems

2009-11-02
2009-01-2765
Fuels derived from biomass will most likely contain oxygen due to the high amount of hydrogen needed to remove oxygen in the production process. Today, alcohol fuels (e. g. ethanol) are well understood for spark ignition engines. The Institute for Combustion Engines at RWTH Aachen University carried out a fuel investigation program to explore the potential of alcohol fuels as candidates for future compression ignition engines to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. The soot formation and oxidation process when using alcohol fuels in diesel engines is not yet sufficiently understood. Depending on the chain length, alcohol fuels vary in cetane number and boiling temperature. Decanol possesses a diesel-like cetane number and a boiling point in the range of the diesel boiling curve. Thus, decanol was selected as an alcohol representative to investigate the influence of the oxygen content of an alcohol on the combustion performance.
Technical Paper

LOTUS: A Co-operation for Low Temperature Urea-Based Selective Catalytic Reduction of NOx

2004-03-08
2004-01-1294
The European research co-operation Lotus is presented. The main objectives of the project were i) to show the potential for a urea-based SCR system to comply with the EU standard of years 2005 and 2008 for heavy-duty Diesel engines for different driving conditions with optimal fuel consumption, ii) to reach 95 % conversion of NOx at steady state at full load on a Euro III engine, iii) to reach 75 % NOx reduction for exhaust temperatures between 200-300°C, and 85 % average NOx reduction between 200-500°C. The energy content of the consumed urea should not exceed 1.0 %, calculated as specific fuel consumption. These targets were met in May 2003 and the Lotus SCR system fulfilled the Euro V NOx legislative objectives for year 2008.
Technical Paper

Start-Up Behavior of Fuel Processors for PEM Fuel Cell Applications

2003-03-03
2003-01-0420
This paper focuses on start-up technology for fuel processing systems with special emphasis on gasoline fueled burners. Initially two different fuel processing systems, an autothermal reformer with preferential oxidation and a steam reformer with membrane, are introduced and their possible starting strategies are discussed. Energy consumption for preheating up to light-off temperature and the start-up time is estimated. Subsequently electrical preheating is compared with start-up burners and the different types of heat generation are rated with respect to the requirements on start-up systems. Preheating power for fuel cell propulsion systems necessarily reaches up to the magnitude of the electrical fuel cell power output. A gasoline fueled burner with thermal combustion has been build-up, which covers the required preheating power.
Technical Paper

IFP Energies Nouvelles Approach for Dual Fuel Diesel-Gasoline Engines

2011-09-11
2011-24-0065
Compared to Spark Ignition (SI) engines, Compression Ignition (CI) engines are more efficient because of the higher compression ratios and leaner operation. However, thanks to stoichiometric air fuel ratio, SI engines allow efficient pollutants after treatment, particularly for NOx emissions. In this context, IFP Energies nouvelles (IFPEN) has developed the concept of diesel-gasoline combustion in order to combine the advantages of both fuels and both combustion processes. Focusing on a passenger car application, experiments have been performed using a modified DI turbocharged small diesel engine (the combustion chamber has been redesigned and port fuel injectors have been added). In-Cylinder Fuel Blending (ICFB) using port-fuel-injection of gasoline and optimized direct injection of diesel was used to control combustion phasing and duration. This modified engine can still run on diesel alone.
Technical Paper

Modular Methodology to Optimize Innovative Drivetrains

2013-09-08
2013-24-0080
In this paper, an integrated simulation-based methodology demonstrating feasibility and performance of several electric-hybrid concepts is developed. Several advanced tools are coupled to define the specifications of each component of the hybrid powertrain, to select the most promising hybrid architecture and finally to assess the proposed powertrain with regard to CO2 and pollutants emissions. Concurrent minimization of NOx and CO2 emissions enables to find the best compromise to fulfil Euro 6 standards while lowering fuel consumption. This stage consists in an iterative co-optimization of the power split strategies between the electric drive and the Diesel engine and of the engine settings (injection pressure, EGR rate, etc.). The methodology combines optimal control laws and optimization methodology based on global statistical models using single-cylinder design of experiments. After several iterations, this method allows to find the optimal NOx/CO2 trade-off curve.
Technical Paper

Evaluation of Different Tabulation Techniques Dedicated to the Prediction of the Combustion and Pollutants Emissions on a Diesel Engine with 3D CFD

2013-04-08
2013-01-1093
In this paper three turbulent combustion models with different underlying hypothesis are compared with measurements from an extensive experimental database. The reference model is ECFM3Z, with the Tabulated Kinetics of Ignition (TKI) model for auto-ignition modeling, together with the CO reduced kinetics (CORK) model and the extended Zeldovich model for the nitrogen oxides. The VVTHC (Variable Volume Tabulated Homogeneous Chemistry) model predicts both the heat release and species evolutions (including CO). The most evolved model proposed is the ADF-PCM (Approximated Diffusion Flame-Presumed Conditional Moment) approach, based on the laminar flamelet equation of the progress variable. ADF-PCM and VVTHC are tabulated models based on a progress variable approach and are then coupled to the tabulated NO model NORA based on relaxation (NO Relaxation Approach). All the present combustion models are coupled to a phenomenological soot kinetics PSK approach.
Technical Paper

About Cross-Sensitivities of NOx Sensors in SCR Operation

2013-04-08
2013-01-1512
Meeting the upcoming NOx emissions standards is a major challenge for the lean-burn engines, thus requiring a highly efficient exhaust gas aftertreatment. Currently, the Selective Catalytic Reduction (SCR) appears to be the most promising technology, especially when operated with two kinds of reductants: ammonia (generally derived from urea) and ethanol. In order to reach high conversion levels while avoiding the overinjection of the reductant, a very accurate model-based control assisted with at least one NOx sensor is required. This study focuses on the sensitivity of NOx sensors to the main nitrogenous species encountered: ammonia, isocyanic acid (HNCO) and hydrogen cyanide (HCN). The cross-sensitivity to ammonia is the only one to be already described in literature and already used in the urea-SCR control systems to limit the risks of ammonia-slip. However, HNCO can also be found downstream of a catalyst during urea-SCR if the urea delivery or the catalyst are deficient.
Technical Paper

Optimization of Dual Fuel Diesel-Methane Operation on a Production Passenger Car Engine - Thermodynamic Analysis

2013-10-14
2013-01-2505
With the emergence of stringent emissions standards and needs for fuel diversification, many countries are considering a massive use of natural gas for transportation. In this context, dual fuel diesel-CNG combustion is considered as a promising solution for highly efficient internal combustion engines. This concept offers the possibility to combine a diesel pilot injection as a high energy combustion initiation event, with an indirect injection of methane as main energy source. Low CO2 emissions can be reached thanks to the use of a conventional compression ignition engine with high compression ratio, and thanks to methane's high knocking resistance and low carbon content. Another benefit of dual fuel operation with high diesel substitution rates is the drastic reduction of PM emissions since methane is a very stable molecule containing no soot precursor.
Technical Paper

Vehicle Study on the Impact of Diesel Fuel Sulfur Content on the Performance of DeNOX Catalysts and the Influence of DeNOX Catalysts on Particle Size and Number

2000-06-19
2000-01-1877
A vehicle investigation programme was initiated to evaluate the influence of diesel fuel sulfur content on the performance of a DeNOx catalyst for NOx control. The programme was conducted with a passive DeNOx catalyst, selected for its good NOx reduction performance and two specially prepared fuels with different sulfur contents. Regulated emissions were measured and analysed during the course of the programme. The NOx conversion efficiency of the DeNOx catalyst increased from 14 to 26% over the new European test cycle when the sulfur content of the diesel fuel was reduced from 49 to 6 wt.-ppm. In addition the number and size of particles produced using 6 wt.-ppm sulfur fuel were measured by two different techniques: mobility diameter by SMPS and aerodynamic diameter by impactor. The influence of the assumed density of the particulate on the apparent diameters measured by the two techniques is discussed.
Technical Paper

Low Emission and Fuel Consumption Natural Gas Engines with High Power Density for Stationary and Heavy-Duty Application

1999-08-17
1999-01-2896
Today, natural gas engines for stationary and vehicular applications are not only faced with stringent emission legislation, but also with increasing requirements for power density and efficient fuel consumption. For vehicular use, downsizing is an advantageous approach to lowering on-road fuel consumption and making gas engines more competitive with their diesel counterparts. In SI-engines, the power density at a given compression ratio is limited by knocking, or NOx emissions. A decrease in compression ratio, lowering both NOx emissions and the risk of knocking combustion, increases fuel consumption. An increase in air-fuel-ratio, required to avoid knocking at higher thermal loading, increases boost pressure, HC and CO emissions, and mechanical loading and causes the danger of misfiring. As a result, the performance of the latest production gas engines for vehicles remains at a BMEP of 18…20 bar with a NOx emission level of 2…5 g/kWh.
X