Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Impacts of System Decisions at the Life Support, EVA, and Habitability Interfaces

2005-07-11
2005-01-2907
Technology developers understand the need to optimize technologies for human missions beyond Earth. Greater benefits are achievable when systems that share common interfaces are optimized as an integrated unit, including taking advantage of possible synergies or removing counterproductive efforts at the mission level. Life support, extravehicular activity (EVA), and habitability are three systems that have significant interfaces with the crew, and thus share many common interfaces with each other. Technologies and architectures developed for these systems need to account for the effect that design decisions will have on each of the other systems. Many of these impacts stem from the use of water by the crew and the way that the life support system provides and processes that water. Other resources, especially air-related, can have significant impacts as well.
Technical Paper

Advanced Space Suit Portable Life Support Subsystem Packaging Design

2006-07-17
2006-01-2202
This paper discusses the Portable Life Support Subsystem (PLSS) packaging design work done by the NASA and Hamilton Sundstrand in support of the 3 future space missions; Lunar, Mars and zero-g. The goal is to seek ways to reduce the weight of PLSS packaging, and at the same time, develop a packaging scheme that would make PLSS technology changes less costly than the current packaging methods. This study builds on the results of NASA's in-house 1998 study, which resulted in the “Flex PLSS” concept. For this study the present EMU schematic (low earth orbit) was used so that the work team could concentrate on the packaging. The Flex PLSS packaging is required to: protect, connect, and hold the PLSS and its components together internally and externally while providing access to PLSS components internally for maintenance and for technology change without extensive redesign impact. The goal of this study was two fold: 1.
Technical Paper

Development of Pressure Swing Adsorption Technology for Spacesuit Carbon Dioxide and Humidity Removal

2006-07-17
2006-01-2203
Metabolically produced carbon dioxide (CO2) removal in spacesuit applications has traditionally been accomplished utilizing non-regenerative Lithium Hydroxide (LiOH) canisters. In recent years, regenerative Metal Oxide (MetOx) has been developed to replace the Extravehicular Mobility Unity (EMU) LiOH canister for extravehicular activity (EVA) missions in micro-gravity, however, MetOx may carry a significant weight burden for potential use in future Lunar or planetary EVA exploration missions. Additionally, both of these methods of CO2 removal have a finite capacity sized for the particular mission profile. Metabolically produced water vapor removal in spacesuits has historically been accomplished by a condensing heat exchanger within the ventilation process loop of the suit life support system.
Technical Paper

Emergency Oxygen System Evaluation for Exploration PLSS Applications

2006-07-17
2006-01-2208
The Portable Life Support System (PLSS) emergency oxygen system is being reexamined for the next generation of suits. These suits will be used for transit to Low Earth Orbit, the Moon and to Mars as well as on the surface of the Moon and Mars. Currently, the plan is that there will be two different sets of suits, but there is a strong desire for commonality between them for construction purposes. The main purpose of this paper is to evaluate what the emergency PLSS requirements are and how they might best be implemented. Options under consideration are enlarging the tanks on the PLSS, finding an alternate method of storage/delivery, or providing additional O2 from an external source. The system that shows the most promise is the cryogenic oxygen system with a composite dewar which uses a buddy system to split the necessary oxygen between two astronauts.
X