Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

An Immersive Vehicle-in-the-Loop VR Platform for Evaluating Human-to-Autonomous Vehicle Interactions

2019-04-02
2019-01-0143
The deployment of autonomous vehicles in real-world scenarios requires thorough testing to ensure sufficient safety levels. Driving simulators have proven to be useful testbeds for assisted and autonomous driving functionalities but may fail to capture all the nuances of real-world conditions. In this paper, we present a snapshot of the design and evaluation using a Cooperative Adaptive Cruise Control application of virtual reality platform currently in development at our institution. The platform is designed so to: allow for incorporating live real-world driving data into the simulation, enabling Vehicle-in-the-Loop testing of autonomous driving behaviors and providing us with a useful mean to evaluate the human factor in the autonomous vehicle context.
Technical Paper

A User-Centered Design Exploration of Fully Autonomous Vehicles’ Passenger Compartments for At-Risk Populations

2018-04-03
2018-01-1318
Autonomous vehicles have the potential to provide mobility to individuals who experience transportation disadvantages due to the inability to drive as a result of physical, cognitive or visual limitations/impairments as well as able-bodied individuals with no/limited desire to drive. Individuals who do not have easy access to transportation have social, academic, health, and career disadvantages in comparison to their peers. Fully autonomous vehicles have the potential to offer mobility solutions to these individuals. A user-centered design approach was utilized by a multidisciplinary team of engineers, human factors specialists, and designers to develop future vehicle features for a broad range of users.
Technical Paper

Evaluation of Alternative Steering Devices with Adjustable Haptic Feedback for Semi-Autonomous and Autonomous Vehicles

2018-04-03
2018-01-0572
Emerging autonomous driving technologies, with emergency navigating capabilities, necessitates innovative vehicle steering methods for operators during unanticipated scenarios. A reconfigurable “plug and play” steering system paradigm enables lateral control from any seating position in the vehicle’s interior. When required, drivers may access a stowed steering input device, establish communications with the vehicle steering subsystem, and provide direct wheel commands. Accordingly, the provision of haptic steering cues and lane keeping assistance to navigate roadways will be helpful. In this study, various steering devices have been investigated which offer reconfigurability and haptic feedback to create a flexible driving environment. A joystick and a robotic arm that offer multiple degrees of freedom were compared to a conventional steering wheel.
Technical Paper

Handling Deviation for Autonomous Vehicles after Learning from Small Dataset

2018-04-03
2018-01-1091
Learning only from a small set of examples remains a huge challenge in machine learning. Despite recent breakthroughs in the applications of neural networks, the applicability of these techniques has been limited by the requirement for large amounts of training data. What’s more, the standard supervised machine learning method does not provide a satisfactory solution for learning new concepts from little data. However, the ability to learn enough information from few samples has been demonstrated in humans. This suggests that humans may make use of prior knowledge of a previously learned model when learning new ones on a small amount of training examples. In the area of autonomous driving, the model learns to drive the vehicle with training data from humans, and most machine learning based control algorithms require training on very large datasets. Collecting and constructing training data set takes a huge amount of time and needs specific knowledge to gather relevant information.
Technical Paper

Trust-Based Control and Scheduling for UGV Platoon under Cyber Attacks

2019-04-02
2019-01-1077
Unmanned ground vehicles (UGVs) may encounter difficulties accommodating environmental uncertainties and system degradations during harsh conditions. However, human experience and onboard intelligence can may help mitigate such cases. Unfortunately, human operators have cognition limits when directly supervising multiple UGVs. Ideally, an automated decision aid can be designed that empowers the human operator to supervise the UGVs. In this paper, we consider a connected UGV platoon under cyber attacks that may disrupt safety and degrade performance. An observer-based resilient control strategy is designed to mitigate the effects of vehicle-to-vehicle (V2V) cyber attacks. In addition, each UGV generates both internal and external evaluations based on the platoons performance metrics. A cloud-based trust-based information management system collects these evaluations to detect abnormal UGV platoon behaviors.
Technical Paper

A Voice and Pointing Gesture Interaction System for On-Route Update of Autonomous Vehicles’ Path

2019-04-02
2019-01-0679
This paper describes the development and simulation of a voice and pointing gesture interaction system for on-route update of autonomous vehicles’ path. The objective of this research is to provide users of autonomous vehicles a human vehicle interaction mode that enables them to make and communicate spontaneous decisions to the autonomous car, modifying its pre-defined autonomous route in real-time. For example, similar to giving directions to a taxi driver, a user will be able to tell the car «Stop there» or «Take that exit». In this way, the user control/spontaneity vs interaction flexibility dilemma that current autonomous vehicle concepts have, could be solved, potentially increasing the user acceptance of this technology. The system was designed following a level structured state machine approach. The simulations were developed using MATLAB and VREP, a robotics simulation platform, which has accurate vehicle and sensor models.
Technical Paper

VoGe: A Voice and Gesture System for Interacting with Autonomous Cars

2017-03-28
2017-01-0068
In the next 20 years fully autonomous vehicles are expected to be in the market. The advance on their development is creating paradigm shifts on different automotive related research areas. Vehicle interiors design and human vehicle interaction are evolving to enable interaction flexibility inside the cars. However, most of today’s vehicle manufacturers’ autonomous car concepts maintain the steering wheel as a control element. While this approach allows the driver to take over the vehicle route if needed, it causes a constraint in the previously mentioned interaction flexibility. Other approaches, such as the one proposed by Google, enable interaction flexibility by removing the steering wheel and accelerator and brake pedals. However, this prevents the users to take control over the vehicle route if needed, not allowing them to make on-route spontaneous decisions, such as stopping at a specific point of interest.
Technical Paper

Teaching Autonomous Vehicles How to Drive under Sensing Exceptions by Human Driving Demonstrations

2017-03-28
2017-01-0070
Autonomous driving technologies can provide better safety, comfort and efficiency for future transportation systems. Most research in this area has mainly been focused on developing sensing and control approaches to achieve various autonomous driving functions. Very little of this research, however, has studied how to efficiently handle sensing exceptions. A simple exception measured by any of the sensors may lead to failures in autonomous driving functions. The autonomous vehicles are then supposed to be sent back to manufacturers for repair, which takes both time and money. This paper introduces an efficient approach to make human drivers able to online teach autonomous vehicles to drive under sensing exceptions. A human-vehicle teaching-and-learning framework for autonomous driving is proposed and the human teaching and vehicle learning processes for handling sensing exceptions in autonomous vehicles are designed in detail.
X