Refine Your Search

Topic

Author

Search Results

Technical Paper

Thin wall and lightweight cylinder block production technology

2000-06-12
2000-05-0067
The automobile industry currently faces many challenges which may greatly impact on its foundry operations. One of these challenges, consumers'' demand for greater fuel efficiency, can be met by reducing the weight of castings used in automobiles, and minimizing engineering tolerances. In answer to this particular demand, engine foundries have begun to either produce cylinder blocks or other castings with aluminum rather than cast iron. However, if a reduction in weight (thin wall and near-net shaping) can be realized with cast iron, there would be numerous merits from the perspective of cost and compactness and there would be much more flexibility in automotive parts design.
Technical Paper

New Four Valves Per Cylinder Basic Engine for Passenger Car

1987-11-08
871177
Through the experience in developing several 4-valve sporty engines, we have had an idea that 4-valve technology regarded as one of sporty engines may be applied to a standard engine of a passenger car. Making use of the superior characteristics of 4-valve technology, combustion chamber design and valve train system were completely refined for a standard engine. Higher torque in low to middle speed range and good fuel economy, important features in practical use, were pursued as the prior target of development. As a passenger car engine, comfortable sound in passenger compartment is an important feature as well as high performance and good fuel economy. With these concepts, we have developed the 3S-FE, 2-liter, 4-valve engine which has achieved 5.1& torque, 18.6% horse power and 9.7% Fuel consumption (highway mode) gains compared with the original 2S-E, 2-liter, 2-valve engine.
Technical Paper

Toyota's New Six-Speed Automatic Transmission AB60E for RWD Vehicles

2007-04-16
2007-01-1098
Toyota Motor Corporation has developed a new six-speed automatic transmission AB60E for longitudinal front engine rear wheel drive (RWD) vehicles. This transmission development was aimed at an improvement of power performance and fuel economy, while achieving a lightweight, compact package and a high torque capacity. In order to achieve this target, a high-capacity ultra-flat torque converter, a highly-rigid transmission case, and an ATF warmer with a valve to switch ATF circuits to an air-cooled ATF cooler have been newly developed. Moreover, a new transmission mode control logic “TOW / HAUL” has been developed to improve power performance and driveability during trailer towing. This automatic transmission has adopted the same gear train and hydraulic control system as the conventional six-speed automatic transmission A760E. This paper describes the structure, major features and performance of the transmission in detail.
Technical Paper

Vehicle Transient Response Based on Human Sensitivity

2008-04-14
2008-01-0597
Grip feeling is an important facet in vehicle dynamics evaluation from a driver satisfaction and enjoyment standpoint. To improve grip feeling, we analyzed the subjective comments from test driver's about grip feeling and an evaluated human sensitivity to lateral motion. As a result, we found that drivers evaluate transient grip feeling according to the magnitude of lateral jerk. Next, we analyzed what vehicle parameters affect lateral jerk by using theoretical equations. As a result, we found that cornering power is an important parameter, especially the cornering power of rear tires as they can be create larger lateral jerk than can front tires.
Technical Paper

Study of Anti-Corrosive Property of Engine Coolant for Aluminum Cylinder Heads

1995-02-01
950119
Recently, use of aluminum engine parts has increased for fuel economy and power improvements. Aluminum cylinder heads, for example, are currently used in most engines. But, only low performance engine coolants are available for prevention of heat-transfer corrosion of aluminum cylinder heads. The authors have studied a laboratory test method that is able to accurately evaluate the performance of engine coolants for prevention of aluminum cylinder head corrosion. And we have developed the new test method by changing the test specimen temperature higher and the engine coolant temperature lower than the ASTM D4340 test. The new test has been confirmed engine bench test. We evaluated further the performance of many engine coolants of the world for prevention of aluminum cylinder head corrosion using the new test. We have known that there were a lot of poor performance engine coolants in the world.
Technical Paper

Development of New Concept Three-Way Catalyst for Automotive Lean-Burn Engines

1995-02-01
950809
A new 3-way catalyst with NOx conversion performance for lean-burn engines has been developed. The catalyst oxidizes NOx and stores the resulting nitrate, which is then reduced by HC and CO during engine operation around the stoichiometric air/fuel ratio. Both the composition of the storage component and the particle sizes of the noble metal were optimized. In addition, a special air fuel mixture control has been developed to make the best of the NOx storage-reduction function. The present catalyst showed 90% conversion efficiency and improved fuel economy by 4% in the Japanese 10-15 mode test cycle. The efficiency remained at 60% or more after durability test.
Technical Paper

New Light Weight 3 Liter V6 Toyota Engine with High Output Torque, Good Fuel Economy and Low Exhaust Emission Levels

1995-02-01
950805
A new generation 3.0 liter V6 engine, the 1MZ-FE, has been developed. Through improvement of the basic technical characteristics of each individual component, the 1MZ-FE has achieved compactness, weight reduction and good fuel economy without adding systems or components. This new engine makes use of an aluminum cylinder block, and compared with the previous V6 engine, significant weight reduction of the crankshaft, connecting rods and pistons was achieved while still maintaining a high level of rigidity. To improve fuel economy, friction loss was reduced substantially by reducing the weight of moving parts and improving the surface roughness of sliding parts. The combustion was also improved through better fuel atomization by the air-assisted fuel injector and modification of the combustion chamber shape. Through these improvements the 1MZ-FE has achieved a weight reduction of approximately 20% and far greater vehicle fuel economy than before.
Technical Paper

Effects of Lubricant Composition on Fuel Efficiency in Modern Engines

1995-02-01
951037
A bench engine test for evaluating the fuel efficiency of automotive crankcase oils using modern engines was developed. The fuel consumption was primarily proportional to the viscosity of the oils down to 5 mm2/s at operating temperatures, indicating that the use of low-viscosity oil was effective in improving fuel efficiency. This may be because the oil film would be formed easily, since sliding parts, such as valve train systems, in modern engines are finely finished. Organo molybdenum dithiocarbamates were effective in improving fuel efficiency at high temperature. A 2.7% improvement in fuel efficiency relative to conventional SAE 10W-30 oils was achieved by the combination of low-viscosity SAE 5W-20 oils and organo molybdenum dithiocarbamates under constant operating conditions with engine speed 1,500 rpm and torque 37.2 N•m.
Journal Article

Development of Exhaust and Evaporative Emissions Systems for Toyota THS II Plug-in Hybrid Electric Vehicle

2010-04-12
2010-01-0831
Exhaust and evaporative emissions systems have been developed to match the characteristics and usage of the Toyota THS II plug-in hybrid electric vehicle (PHEV). Based on the commercially available Prius, the Toyota PHEV features an additional external charging function, which allows it to be driven as an electric vehicle (EV) in urban areas, and as an hybrid electric vehicle (HEV) in high-speed/high-load and long-distance driving situations. To reduce exhaust emissions, the conventional catalyst warm up control has been enhanced to achieve emissions performance that satisfies California's Super Ultra Low Emissions Vehicle (SULEV) standards in every state of battery charge. In addition, a heat insulating fuel vapor containment system (FVS) has been developed using a plastic fuel tank based on the assumption that such a system can reduce the diffusion of vapor inside the fuel tank and the release of fuel vapor in to the atmosphere to the maximum possible extent.
Journal Article

Development of Clean Diesel NOx After-treatment System with Sulfur Trap Catalyst

2010-04-12
2010-01-0303
Diesel engines with relatively good fuel economy are known as an effective means of reducing CO₂ emissions. It is expected that diesel engines will continue to expand as efforts to slow global warming are intensified. Diesel particulate and NOx reduction system (DPNR), which was first developed in 2003 for introduction in the Japanese and European markets, shows high purification performance which can meet more stringent regulations in the future. However, it is poisoned by sulfur components in exhaust gas derived from fuel and lubricant. We then developed the sulfur trap DPNR with a sulfur trap catalyst that traps sulfur components in the exhaust gas. High purification performance could be achieved with a small amount of platinum group metal (PGM) due to prevention of sulfur poisoning and thermal deterioration.
Technical Paper

Development of Innovative Dynamic Torque Vectoring AWD System

2019-04-02
2019-01-0332
This paper describes the development of an innovative AWD system called Dynamic Torque Vectoring AWD for all-wheel drive (AWD) vehicles based on a front-wheel drive configuration. The Dynamic Torque Vectoring AWD system helps to achieve high levels of both dynamic performance and fuel efficiency. Significant fuel economy savings are achieved by using a new compact disconnection mechanism at the transfer and rear units, which prevents any unnecessary rotation of the propeller shaft. In addition, the system is also capable of independently distributing torque to the rear wheels by utilizing electronically controlled couplings on the left and right sides of the rear differential. This greatly enhances both on-road cornering performance and off-road driving performance.
Technical Paper

Has Electronic Stability Control Reduced Rollover Crashes?

2019-04-02
2019-01-1022
Vehicle rollovers are one of the more severe crash modes in the US - accounting for 32% of all passenger vehicle occupant fatalities annually. One design enhancement to help prevent rollovers is Electronic Stability Control (ESC) which can reduce loss of control and thus has great promise to enhance vehicle safety. The objectives of this research were (1) to estimate the effectiveness of ESC in reducing the number of rollover crashes and (2) to identify cases in which ESC did not prevent the rollover to potentially advance additional ESC development. All passenger vehicles and light trucks and vans that experienced a rollover from 2006 to 2015 in the National Automotive Sampling System Crashworthiness Database System (NASS/CDS) were analyzed. Each rollover was assigned a crash scenario based on the crash type, pre-crash maneuver, and pre-crash events.
Technical Paper

Development of Sintered Integral Camshaft

1983-02-01
830254
The camshaft for an automobile engine is generally made of chilled cast iron. Due to increasing demand for higher performance, lawer maintenance and better fuel economy, it is difficult to make the cast iron camshaft lighter and/or more durable. In order to overcome these problems, development of an integral camshaft comprised of a sintered alloy cam piece for better wear resistance and steel tube for weight saving has been accomplished. In 1981 Toyota Motor Corporation successively started the mass-production of the sintered intergral camshaft for the new 1.8 liter ls engine. The significant advantages are as follows; (1) Weight saving (2) Excellent wear resistance (3) Improvement of lubrication system (4) Saving machining cost
Technical Paper

Development of Methanol Lean Burn System

1986-03-01
860247
A methanol fueled, lean burn system has been developed to improve both specific fuel consumption and NOx emissions. A 1.6L four-cylinder engine with increased compression ratio has been used to develop this system. Three major components of the Toyota Lean Combustion System (T-LCS) have been applied: (1) A helical port with a swirl control valve (2) A lean mixture sensor (3) Timed, multi-point fuel injection. A 2250 lb. Inertia Weight test vehicle has been fitted with this engine, and fuel system materials have been modified. This methanol, lean burn system has improved the fuel economy by about 12% still satisfying the 1986 emission standards of the U.S.A. and Japan. Aldehyde emissions have also been evaluated.
Technical Paper

Effects of Fuel Properties and Engine Design Features on the Performance of a Light-Duty Diesel Truck - A Cooperative Study

1986-10-01
861526
A cooperative research program has been completed evaluating the relative impact of fuel composition and engine design features on the emissions and fuel economy of a Toyota light-duty diesel truck. The fuel set was blended from commercially available refinery stocks and consisted of eight fuels with independently varying 10% and 90% distillation temperatures and aromatic content. The engine design variables included two compression ratios and three injector types with different fuel flow characteristics, and three injection timings. The main fuel effects observed were increasing hydrocarbon and particulate emissions with increasing aromatic content and, to a much lesser degree, increasing emissions with increasing 10% and 90% point. Changing from the standard fuel injectors to the reference injectors, which had both a higher nozzle opening pressure and a higher initial fuel flow rate, resulted in a substantial reduction in all emissions and improvements in fuel economy.
Technical Paper

Toyota's New Six-Speed Automatic Transmission A761E for RWD Vehicles

2004-03-08
2004-01-0650
Toyota Motor Corporation has recently developed a new six-speed automatic transmission (A761E) for Front Engine Rear Wheel Drive (FR) vehicles. Following the general trend of increased shift stages and a wider range of gear ratios, this six-speed automatic transmission has been developed with attention paid to the gear steps and a wider range of gear ratios. By balanced selection of close-ratio gears in a wider range, the change greatly improves the power performance and fuel economy of the vehicle. To further improve fuel economy we have adopted new technologies such as low-viscosity ATF, neutral control, and deceleration control by extending the fuel cut range (reset speed). We have also adopted a flat-shaped torque converter, small solenoids, an aluminum oil pump cover, etc. to realize the lightest six-speed automatic transmission in the world.
Technical Paper

Toyota's New Six-Speed Automatic Transaxle U660E for FWD Vehicles

2006-04-03
2006-01-0847
Toyota Motor Corporation has developed a new six-speed automatic transaxle (U660E) for Front Wheel Drive (FWD) vehicles. Component parts of U660E are completely redesigned. By combining an innovative gear train which Toyota originally invented and newer technologies, U660E has achieved outstanding fuel economy, smooth and quick shift performance and quietness in a lightweight package among Automatic Transaxles (AT) with similar torque capacity.
Technical Paper

Development of a New Hybrid Transmission for RWD Car

2006-04-03
2006-01-1339
1 The new L110 hybrid transmission was developed for use in front-engine, rear wheel drive (FR) vehicles with 3.5-liter engines. The project goals were to develop a compact, slim structure that could be installed on a platform with an FR layout, and to provide the power performance, high-speed performance, and quietness of a luxury car while maintaining the fuel economy performance of a hybrid. To accomplish this, a new gear train, motor, and other components were developed. The newly developed hybrid transmission also uses coordinated control between the shift mechanism and the motor to achieve acceleration performance without causing the driver to feel any shock from an abrupt change of speed. This paper describes the main structural elements of the transmission and various aspects of its performance.
Technical Paper

Development of Vibration Reduction Motor Control for Series-Parallel Hybrid System

2006-04-03
2006-01-1125
In hybrid electric vehicles, engine starting and stopping occur frequently to provide better fuel economy. Specifically, the structure of the series-parallel hybrid system transmits engine torque pulsations to the driving wheels during engine starting and stopping, which may degrade the quality of the ride. In addition, the quick response of the electric motor can easily cause drivetrain vibration. This paper presents a motor control system for a series-parallel hybrid vehicle designed to reduce these vibrations. The proposed motor control system consists of two parts; one controller functions to compensate the engine torque pulsation during engine starts, and the other controller functions to control torsional vibration of the propeller shaft and drive shaft generated by rapid increases or decreases in driving torque. The proposed vibration reduction motor control method was added to the motor controller on the first rear wheel drive hybrid vehicle (Lexus GS450h).
Technical Paper

Improvement of Vehicle Dynamics Based on Human Sensitivity (Second Report) -A Study of Cornering Feel-

2007-04-16
2007-01-0447
Vehicle body movements that occur during cornering have a strong influence on the evaluation of ride and handling. As a first step, we analyze subjective comments from trained drivers and find that the sense of vision played a major part in cornering feel. As a result of quantitative evaluations, we hypothesize that smaller time lag between roll angle and pitch angle made cornering feel better. We perform a human sensitivity evaluation, which confirmed this hypothesis. Given this result, we derive analytical equations for the roll center kinematics and the damping characteristics, in order to find a theoretical condition for the time lag of 0sec (giving a good cornering feel). We verify this by experiment.
X