Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development and Performance Studies on Ion-Exchanged X-Zeolites as Catalysts for SI Engine Emission Control

Three catalysts based on X-zeolite have been developed by exchanging its Na+ ion with Copper, Nickel and Vanadium metal ions and tested in a stationary SI engine exhaust to observe their potentialities for NOx and CO controlling. The catalyst Cu-X, in comparison to Ni-X and V-X, exhibits much better NOx and CO reduction performance at any temperature. Maximum NOx conversion efficiencies achieved with Cu-X, Ni-X and V-X are 62.2%, 59.7% and 56.1% respectively. Unlike noble metals, the doped X-zeolite catalysts, studied here, maintain their peak NOx reduction performance through a wider range of A/F ratio. Back pressure developed across the catalyst bed is found to be well within the acceptable limits.
Technical Paper

NOx Reduction in SI Engine Exhaust Using Selective Catalytic Reduction Technique

Copper ion-exchanged X-zeolite with urea infusion was tested for nitrogen oxide (NOx)conversion efficiency in this study. Temperature datapoints were obtained to arrive at peak activation temperatures. Variation of the air/fuel ratio showed the widening of the λ-window(the range of air-fuel ratios over which the NOx conversion efficiency is considerable); a maximum of 62% NOx conversion efficiency was obtained in the lean-burn range. Effects of space velocity variations were also observed. In order to minimise the deactivation of zeolite caused by water, ammonium carbonate and ammonium sulphate were deposited on the copper ion-exchanged X-zeolite and the corresponding NOx conversion efficiencies measured. Ammonia slip (leakage of unreacted ammonia), a prospective pollution hazard, was observed to be more in case of urea infusion than ammonium salt deposition at higher temperatures.