Refine Your Search

Topic

Author

Search Results

Technical Paper

Studies on Performance and Exhaust Emissions of a CI Engine Operating on Diesel and Diesel Biodiesel Blends at Different Injection Pressures and Injection Timings

2007-04-16
2007-01-0613
The effect of variation in injection pressure and Injection timing on the performance and exhaust emission characteristics of a direct injection, naturally aspirated Diesel engine operating on Diesel and Diesel-Biodiesel Blends were studied. A three-way factorial design consisting of four levels of injection pressure (150,210, 265,320 bar), four levels of injection timing (19° btdc, 21.5° btdc, 26° btdc, and 30.5° btdc) and five different fuel types (D100, B10, B20, B40, and B60) were employed in this test. The experimental analysis shows that when operating with Linseed Oil Methyl Ester-Diesel blends, we could increase the injection pressure by about 25% over the normal value of 20MPa. The engine performance and exhaust emission characteristics of the engine operating on the ester fuels at advanced injection timing were better than when operating at increased injection pressure.
Technical Paper

Influence of Particle Size of Graphite on Performance Properties of Friction Composites

2007-10-07
2007-01-3967
Non-Asbestos Organic (NAO) brake- material research has been significant in the last decade in an attempt to replace the conventional semi-metallic and asbestos based materials. Influence of ingredients in this multi-ingredient (generally 10-25 in different proportions) system on performance properties, however, is still not thoroughly researched area because of complexity involved and needs intensive efforts to understand this aspect. Graphite is one of the most important and almost inevitable ingredients in friction materials. A wide variety of graphite varying in origin, particle size, crystallinity, thermal conductivity etc. is used by the industry. An in-depth and systematic study on the influence of size of graphite on tribo-performance, however, is not available.
Technical Paper

Theoretical and Experimental Investigation on Current Generation Pd/Rh Catalytic Converter

2002-03-04
2002-01-0905
Performance of a Current generation catalytic converter using Pd/Rh (10:1) as binary catalyst impeded on an ultra thin ceramic substrate and alumina wash coat is modeled for performance prediction and parametric optimization. Kinetic rates for the catalyst are reduced after conducting series of experiments on a passenger car engine. A new concept in mass transfer coefficient is introduced for improving accuracy of the model prediction. In order to take care of the precious metal resources and to become independent of precious metal price fluctuation, a new pattern of loading of precious metal is suggested for optimum performance and metal savings about 46 percent was observed. Experimental investigations were carried out to validate the established kinetic rates over a wide range operation of the engine and for the model validation. Satisfactory agreements are observed for the model prediction and experimental results.
Technical Paper

Experimental Investigation on the Use of Water Diesel Emulsion with Oxygen Enriched Air in a DI Diesel Engine

2001-03-05
2001-01-0205
A single cylinder, direct injection diesel engine was run on water diesel emulsion at a constant speed of 1500 rpm under variable load conditions. Water to diesel ratio of 0.4 on the mass basis was used. Tests indicated a considerable reduction in smoke and NO levels. This was accompanied by an increase in brake thermal efficiency at high outputs. HC & CO levels, ignition delay and rate of pressure rise went up. The heat release rate in the premixed burn period was higher. When the oxygen concentration in the intake air was enhanced in steps up to 25% along with the use of water diesel emulsion, the brake thermal efficiency was improved and there was a further reduction in the smoke level. HC and CO levels also dropped. NO emission went up due to increased temperature and oxygen availability. An oxygen concentration of 24% by volume was optimal as the NO levels were near about base diesel values.
Technical Paper

Non-Reacting and Reacting Flow Analysis in an Aero-Engine Gas Turbine Combustor Using CFD

2007-04-16
2007-01-0916
A gas turbine combustion system is an embodiment of all complexities that engineering equipment can have. The flow is three dimensional, swirling, turbulent, two phase and reacting. The design and development of combustors, until recent past, was an art than science. If one takes the route of development through experiments, it is quite time consuming and costly. Compared to the other two components viz., compressor and turbine, the combustion system is not yet completely amenable to mathematical analysis. A gas turbine combustor is both geometrically and fluid dynamically quite complex. The major challenge a combustion engineer faces is the space constraint. As the combustion chamber is sandwiched between compressor and turbine there is a limitation on the available space. The critical design aspect is in facing the aerodynamic challenges with minimum pressure drop. Accurate mathematical analysis of such a system is next to impossible.
Technical Paper

Extrapolation of Service Load Data

2009-05-13
2009-01-1619
Fatigue design has to account for the scatter of component geometry, material behavior and loading. Scatter of the first two variables is mainly due to manufacturing and material sourcing. Loading on the other hand depends decisively on operating conditions and customer usage. Loading is certainly most difficult to determine. Tests on proving ground or even long-term real time measurements are used to obtain actual load time histories. Because of the costs of measurements and safety measure, real-time measurements are used exceptionally to gain changes in the usage profile. In this paper, an attempt has been made to find the difference in the extrapolated data to the actual data. A comparison has been made between the actual road distance of 2000 km to the extrapolated data of 100 km, 500 km and 1000 km to 2000 km. The front Axle channel is taken for the study.
Technical Paper

Experimental Evaluation of Mahua based Biodiesel as Supplementary Diesel Fuel

2009-04-20
2009-01-0479
Biodiesel developed from non- edible seeds grown in the wasteland in India can be very effectively utilized in the existing diesel engines used for various applications. This paper presents the results of investigations carried out in studying the fuel properties of mahua oil methyl ester (MOME) and its blend with diesel from 20% to 80% by volume. These properties were found to be comparable to diesel and confirming to both the American and Indian standards. The performance of mahua biodiesel (MOME) and its blend with diesel in a Kirloskar DAF8 engine has been observed. The addition of MOME to diesel fuel has significantly reduced CO, UBHC and smoke emissions but increases the NOx emission slightly. The reductions in exhaust emissions could help in controlling air pollution. The results show that no significant power reduction in the engine operation when operated with blends of MOME and diesel fuel.
Technical Paper

Experimental Study of Variation between Quasi-static and Dynamic Load Deformation Properties of Bovine Medial Collateral Ligaments

2009-04-20
2009-01-0392
In a significant number of automobile crashes involving pedestrians, the ligaments which control the stability of the knee, often get severely loaded. In lateral impact on knee during automotive crashes, varus-valgus motion results in failure of ligament by avulsion or by rupture in the middle region It is known that properties vary in different regions of the ligament. Experimental measurement of tensile load-elongation behavior of the middle region of bovine medial collateral ligament at strain rates of 10−4 /s to 160/s are reported here. The results show that the stress-strain behavior is linear under quasi-static loading whereas it is nonlinear and strain rate sensitive in dynamic loading conditions.
Technical Paper

Effect Of Swirl and Tumble on the Stratified Combustion of a DISI Engine - A CFD Study

2011-04-12
2011-01-1214
Of late direct injection engines are replacing carburetted and port injected engines due to their high thermal efficiency and fuel economy. One of the reasons for the increased fuel economy is the ultra lean mixture with which the engine operates under low loads. Under the low load conditions, the air fuel ratio of the mixture near the spark plug is close to stoichiometric values while the overall mixture is lean, which is called stratified mixture. In order to achieve this, proper air motion during the late stages of compression is a must. Quality of the mixture depends on the time of injection as well as the type of fuel injector and mixture preparation strategy used. Engines employing air guided mixture preparation are considered as the second generation engines. For understanding the efficient mixture preparation method, three types of flow structures like base (low tumble), high tumble and inclined swirl are created inside the engine cylinder using shrouds on the intake valves.
Technical Paper

Near Nozzle Flow and Atomization Characteristics of Biodiesel Fuels

2017-10-08
2017-01-2327
Fuel atomization and air-fuel mixing processes play a dominant role on engine performance and emission characteristics in a direct injection compression ignition engine. Understanding of microscopic spray characteristics is essential to predict combustion phenomena. The present work investigated near nozzle flow and atomization characteristics of biodiesel fuels in a constant volume chamber. Waste cooking oil, Jatropha, and Karanja biodiesels were applied and the results were compared with those of conventional diesel fuel. The tested fuels were injected by a solenoid injector with a common-rail injection system. A high-speed camera with a long distance microscopic lens was utilized to capture the near nozzle flow. Meanwhile, Sauter mean diameter (SMD) was measured by a phase Doppler particle analyzer to compare atomization characteristics.
Technical Paper

Transient Fatigue Analysis of Exhaust System Mounting Brackets for Commercial Vehicle - Correlation

2017-03-28
2017-01-1333
In commercial vehicles, exhaust system is normally mounted on frame side members (FSM) using hanger brackets. These exhaust system hanger brackets are tested either as part of full vehicle durability testing or as a subsystem in a rig testing. During initial phases of product development cycle, the hanger brackets are validated for their durability in rig level testing using time domain signals acquired from mule vehicle. These signals are then used in uni-axial, bi-axial or tri-axial rig facilities based on their severity and the availability of test rigs. This paper depicts the simulation method employed to replicate the bi-directional rig testing through modal transient analysis. Finite Element Method (FEM) is applied for numerical analysis of exhaust system assembly using MSC/Nastran software with the inclusion of rubber isolator modeling, meshing guidelines etc. Finite Element Analysis (FEA) results are in good agreement with rig level test results.
Technical Paper

Parametric Investigations on the Performance of Diesel Oxidation Catalyst in a Light Duty Diesel Engine - An Experimental and Modelling Study

2019-01-09
2019-26-0299
In order to comply with the stringent future emission mandates of automotive diesel engines it is essential to deploy a suitable combination of after treatment devices like diesel oxidation catalyst (DOC), diesel particulate filter (DPF) and DeNox converter (Lean NOx Trap (LNT) or Selective Catalytic reduction (SCR) system). Since arriving at a suitable strategy through experiments will involve deploying a lot of resources, development of well-tuned simulation models that can reduce time and cost is important. In the first phase of this study experiments were conducted on a single cylinder light duty diesel engine fitted with a diesel oxidation catalyst (DOC) at thirteen steady state mode points identified in the NEDC (New European Driving cycle) cycle. Inlet and exit pressures and temperatures, exhaust emission concentrations and catalyst bed temperature were measured. A one dimensional simulation model was developed in the commercial software AVL BOOST.
Technical Paper

Diesel Engine Cylinder Deactivation for Improved System Performance over Transient Real-World Drive Cycles

2018-04-03
2018-01-0880
Effective control of exhaust emissions from modern diesel engines requires the use of aftertreatment systems. Elevated aftertreatment component temperatures are required for engine-out emissions reductions to acceptable tailpipe limits. Maintaining elevated aftertreatment components temperatures is particularly problematic during prolonged low speed, low load operation of the engine (i.e. idle, creep, stop and go traffic), on account of low engine-outlet temperatures during these operating conditions. Conventional techniques to achieve elevated aftertreatment component temperatures include delayed fuel injections and over-squeezing the turbocharger, both of which result in a significant fuel consumption penalty. Cylinder deactivation (CDA) has been studied as a candidate strategy to maintain favorable aftertreatment temperatures, in a fuel efficient manner, via reduced airflow through the engine.
Technical Paper

Multi-Objective Optimization of Two Stage Spur Gearbox Using NSGA-II

2017-07-10
2017-28-1939
Minimum weight and high-efficiency gearboxes with the maximum service life are the prime necessity of today’s high-performance power transmission systems such as automotive and aerospace. Therefore, the problem to optimize the gearboxes is subjected to a considerable amount of interest. To accomplish these objectives, in this paper, two generalized objective functions for two stage spur-gearbox are formulated; first objective function aims to minimize the volume of gearbox material, while the second aims to maximize the power transmitted by the gearbox. For the optimization purpose, regular mechanical and critical tribological constraints (scuffing and wear) are considered. These objective functions are optimized to obtain a Pareto front for the two-stage gearbox using a specially formulated discrete version of non-dominated sorting genetic algorithm (NSGA-II) code written MATLAB. Two cases are considered, in the first with the regular mechanical constraints.
Technical Paper

Experimental and Modeling Investigation of NO Formation Mechanism for Biodiesel and Its Blend with Methanol

2019-04-02
2019-01-0217
Biodiesel makes an attractive option to replace fossil diesel owing to its applicability in diesel engines without major modifications. An increase in NO emissions with biodiesel compared to diesel is a major concern for its wider use. Blending alcohols, such as methanol, with biodiesel is a potential remedy to mitigate NO formation, as suggested by experiments. However, computational investigations studying the effect of biodiesel-methanol blends on NO formation are scarce. A combined experimental and computational approach is adopted here to investigate the NO formation mechanism with neat biodiesel and biodiesel-methanol blend fueled light duty diesel engine. Firstly, a new compact kinetic model is utilized consisting of oxidation reactions for methyl butanoate and n-dodecane as a surrogate for biodiesel. A surrogate is defined to represent biodiesel based on a combined property and functional group based approach.
Technical Paper

Effects of Compression Ratio and Water Vapor Induction on the Achievable Load Limits of a Light Duty Diesel Engine Operated in HCCI Mode

2019-04-02
2019-01-0962
Among the various Low Temperature Combustion (LTC) strategies, Homogeneous Charge Compression Ignition (HCCI) is most promising to achieve near zero oxides of nitrogen (NOx) and particulate matter emissions owing to higher degree of homogeneity and elimination of diffusion phase combustion. However, one of its major limitations include a very narrow operating load range owing to misfire at low loads and knocking at high loads. Implementing HCCI in small light duty air cooled diesel engines pose challenges to eliminate misfire and knocking problems owing to lower power output and air cooled operation, respectively. In the present work, experimental investigations are done in HCCI mode in one such light duty production diesel engine most widely used in agricultural water pumping applications. An external mixture preparation based diesel HCCI is implemented in the test engine by utilizing a high-pressure port fuel injection system, a fuel vaporizer and an air preheater.
Technical Paper

Development of Improved Thermodynamic Model Using Cylinder Blow by and Double-Wiebe Functions for High Speed Diesel Engine

2018-04-03
2018-01-0244
In the present work, a tuned gas dynamics based blow by model was used for prediction of thermodynamic state variables till start of combustion in a high speed diesel engine. The burn rate fraction was determined from experimental pressure trace using Rassweiller-Withrow method. Furthermore, suitable single and double Wiebe parameters, consistent with the experimental combustion behavior were determined statistically. The comparison with experimental heat release and burn rate fraction confirmed the unsuitability of single Wiebe function for diesel combustion. A stochastic zero-dimensional thermodynamic model was used to predict pressure traces for various load/fueling conditions. The results exhibited a sub-15% error margin between predicted and experimental pressure traces across all crank angles and fuelling rates. Finally, the model constants are proposed as a function of non-dimensional fuelling rate.
Technical Paper

An Experimental and Numerical Study of N-Dodecane/Butanol Blends for Compression Ignition Engines

2018-04-03
2018-01-0240
Alcohols are potential blending agents for diesel that can be effectively used in compression ignition engines. This work investigates the use of n-butanol as a blending component for diesel fuel using experiments and simulations. Dodecane was selected as a surrogate for diesel fuel and various concentrations of n-butanol were added to study ignition characteristics. Ignition delay times for different n-butanol/dodecane blends were measured using the ignition quality tester at KAUST (KR-IQT). The experiments were conducted at pressure of 21 and 18 bar, temperature ranging from 703-843 K and global equivalence ratio of 0.85. A skeletal mechanism for n-dodecane and n-butanol blends with 203 species was developed for numerical simulations. The mechanism was developed by combining n-dodecane skeletal mechanism containing 106 species and a detailed mechanism for all the butanol isomers.
Technical Paper

Use of Water-Butanol Blends in a Turbocharged Common Rail Dual Fuel Engine for Enhanced Performance and Reduce Smoke Levels

2018-04-03
2018-01-0251
Experiments were conducted on a turbocharged three cylinder automotive common rail diesel engine with port injection of butanol. This dual fuel engine was run with neat butanol and blends of water and butanol (up to 20% water by mass). Experiments were performed at a constant speed of 1800 rpm and a brake mean effective pressure of 11.8 bar (full load) at varying butanol to diesel energy share values while diesel was either injected as a single pulse or as twin pulses (Main plus Post). Open engine controllers were used for varying the injection parameters of diesel and butanol. Water butanol blends improved the brake thermal efficiency by a small extent because of better combustion phasing as compared to butanol without water. When the butanol to diesel energy share was high, auto-ignition of butanol occurred before the injection of diesel. This lowered the ignition delay of diesel and hence elevated the smoke level.
Technical Paper

A Composition Based Approach for Predicting Performance and Emission Characteristics of Biodiesel Fuelled Engine

2017-10-08
2017-01-2340
Biodiesel is a renewable, carbon neutral alternative fuel to diesel for compression ignition engine applications. Biodiesel could be produced from a large variety of feedstocks including vegetable oils, animal fats, algae, etc. and thus, vary significantly in their composition, fuel properties and thereby, engine characteristics. In the present work, the effects of biodiesel compositional variations on engine characteristics are captured using a multi-linear regression model incorporated with two new biodiesel composition based parameters, viz. straight chain saturation factor (SCSF) and modified degree of unsaturation (DUm). For this purpose, biodiesel produced from seven vegetable oils having significantly different compositions are tested in a single cylinder diesel engine at varying loads and injection timings. The regression model is formulated using 35 measured data points and is validated with 15 other data points which are not used for formulation.
X