Refine Your Search

Topic

Author

Search Results

Video

Supplier Discussions - 2012

2012-03-29
Seven different suppliers will discuss their latest technologies. Panelist Jon Bereisa, Auto Lectrification LLC John Burgers, Dana Canada Corporation Derek De Bono, Valeo Dusan Graovac, Infineon Technologies AG Ronald P. Krupitzer, American Iron and Steel Institute Timothy J. Lawler, Bosch Corp. Ian M. Sharp, Flybrid Systems LLP
Technical Paper

High Performance Processor Architecture for Automotive Large Scaled Integrated Systems within the European Processor Initiative Research Project

2019-04-02
2019-01-0118
Autonomous driving systems and connected mobility are the next big developments for the car manufacturers and their suppliers during the next decade. To achieve the high computing power needs and fulfill new upcoming requirements due to functional safety and security, heterogeneous processor architectures with a mixture of different core architectures and hardware accelerators are necessary. To tackle this new type of hardware complexity and nevertheless stay within monetary constraints, high performance computers, inspired by state of the art data center hardware, could be adapted in order to fulfill automotive quality requirements. The European Processor Initiative (EPI) research project tries to come along with that challenge for next generation semiconductors. To be as close as possible to series development needs for the next upcoming car generations, we present a hybrid semiconductor system-on-chip architecture for automotive.
Technical Paper

μAFS High Resolution ADB/AFS Solution

2016-04-05
2016-01-1410
A cooperation of several research partners supported by the German Federal Ministry of Research and Education proposes a new active matrix LED light source. A multi pixel flip chip LED array is directly mounted to an active driver IC. A total of 1024 pixel can be individually addressed through a serial data bus. Several of these units are integrated in a prototype headlamp to enable advanced light distribution patterns in an evaluation vehicle.
Technical Paper

Smart IGBT's for Advanced Distributed Ignition Systems

2004-03-08
2004-01-0518
Driven by factors like consumption, power output per liter, comfort and more stringent exhaust gas standards the powertain control area, has developed rapidly in the last decades. This trend has also brought with it many innovations in the ignition application. Today we can see a trend to Pencil-coil or Plug-top-coil ignition systems. The next step in system partitioning is to remove the power driver from the ECU and place it directly in/on the coil body. The advantages of the new partitioning - e.g. no high voltage wires, reduced power dissipation on the ECU - are paid with different, mainly tougher requirements for the electronic components. By using specialized technologies for the different functions - IGBT for switching the power, SPT for protection, supply and diagnostics - in chip-on-chip technology all required functions for a decentralized ignition system can be realized in a TO220/ TO263 package.
Technical Paper

Seamless Solution for Electronic Power Steering

2006-04-03
2006-01-0593
The number of safety critical automotive applications employing high current brushless motors continues to increase (Steering, Braking, and Transmission etc.). There are many benefits when moving from traditional solutions to electrically actuated solutions. Some of these benefits can include increased fuel economy, simplified vehicle installation and packaging, increased feature set, improved safety and/or convenience, simplified unit assembly and modular testability prior as well as during vehicle manufacturing. The trend to implement brushless motors in these applications (which require electronically controlled commutation) has also brought with it the need for powerful inverters, which primarily consist of Power MOSFETs and MOSFET Driver ICs. This paper reviews the challenges associated with the design of safety critical electronic systems which combine sensing, control and actuation.
Technical Paper

Advanced Gasoline Engine Management Platform for Euro IV & CHN IV Emission Regulation

2008-06-23
2008-01-1704
The increasingly stringent requirements in relation to emission reduction and onboard diagnostics are pushing the Chinese automotive industry toward more innovative solutions and a rapid increase in electronic control performance. To manage the system complexity the architecture will require being well structure on hardware and software level. The paper introduces GEMS-K1 (Gasoline Engine Management System - Kit 1). GEMS-K1 is a platform being compliant with Euro IV emission regulation for gasoline engines. The application software is developed using modeling language, the code is automatically generated from the model. The driver software has a well defined structure including microcontroller abstraction layer and ECU abstraction layer. The hardware is following design rules to be robust, 100% testable and easy to manufacture. The electronic components use the latest innovation in terms of architecture and technologies.
Technical Paper

Cost Efficient Integration for Decentralized Automotive ECU

2004-03-08
2004-01-0717
As the demand for enhanced comfort, safety and differentiation with new features continues to grow and as electronics and software enable most of these, the number of electronic units or components within automobiles will continue to increase. This will increase the overall system complexity, specifically with respect to the number of controller actuators such as e-motors. However, hard constraints on cost and on physical boundaries such as maximum power dissipation per unit and pin-count per unit/connector require new solutions to alternative system partitioning. Vehicle manufacturers, as well as system and semiconductor suppliers are striving for increased scalability and modularity to allow for most cost optimal high volume configurations while featuring platform reuse and feature differentiation. This paper presents new semiconductor based approaches with respect to technologies, technology mapping and assembly technologies.
Technical Paper

Motor Control in Auxiliary Drive Systems How to Choose the Best Fitting Electronic Solution

2014-04-01
2014-01-0323
In modern vehicles, the number of small electrical drive systems is still increasing continuously for blowers, fans and pumps as well as for window lifts, sunroofs and doors. Requirements and operating conditions for such systems varies, hence there are many different solutions available for controlling such motors. In most applications, simple, low-cost DC motors are used. For higher requirements regarding operating time and in stop-start capable systems, the focus turns to highly efficient and durable brushless DC motors with electronic commutation. This paper compares various electronic control concepts from a semiconductor vendor point of view. These concepts include discrete control using relays or MOSFETs. Furthermore integrated motor drivers are discussed, including system-on-chip solutions for specific applications, e.g. specific ICs for window lift motors with LIN interface.
Technical Paper

Microsecond Bus (μSB): The New Open-Market Peripheral Serial Communication Standard

2005-04-11
2005-01-0057
For the past approximately 20 years, the Serial Peripheral Interface (SPI) has been the established standard for serial communication between a host or central microprocessor and peripheral devices. This standard has been used extensively in control modules covering the entire spectrum of automotive applications, as well as non-automotive applications. As the complexity of engine control modules grows, with the number of vehicle actuators being controlled and monitored increasing, the number of loads the central microprocessor has to manage is growing accordingly. These loads are typically controlled using discrete and pulse-width modulated (PWM) outputs from the microcontroller when real-time operation is essential or via SPI when real-time response is not critical. The increase of already high pin-count on microcontrollers, the associated routing effort and demand for connected power stages is a concern of cost and reliability for future ECU designs.
Technical Paper

Feasibility Study for a Secure and Seamless Integration of Over the Air Software Update Capability in an Advanced Board Net Architecture

2016-04-05
2016-01-0056
Vehicle manufacturers are challenged by rising costs for vehicle recalls. A major part of the costs are caused by software updates. This paper describes a feasibility study on how to implement software update over the air (SOTA) in light vehicles. The differences and special challenges in the automotive environment in comparison to the cellular industry will be explained. Three key requirements focus on the drivers’ acceptance and thus are crucial for the vehicle manufacturers: SOTA must be protected against malicious attacks. SOTA shall interfere as little as possible with the availability of a vehicle. Long update processes with long vehicle downtimes or even complete fails must be avoided. The functional safety of the vehicle during operation may not be limited in any way The study gives options how those objectives can be achieved. It considers the necessary security measures and describes the required adaptations of the board-net architectures both on software and hardware level.
Technical Paper

Enhanced Injector Dead Time Compensation by Current Feedback

2016-04-05
2016-01-0088
The constant motivation for lower fuel consumption and emission levels has always been in the minds of most auto makers. Therefore, it is important to have precise control of the fuel being delivered into the engine. Gasoline Port fuel injection has been a matured system for many years and cars sold in emerging markets still favor such system due to its less system complexity and cost. This paper will explain injection control strategy of today during development, and especially the injector dead-time compensation strategy in detail and how further improvements could still be made. The injector current profile behavior will be discussed, and with the use of minimum hardware electronics, this paper will show the way for a new compensation strategy to be adopted.
Journal Article

The Challenges of Devising Next Generation Automotive Benchmarks

2008-04-14
2008-01-0382
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers with incredible levels of peripheral integration. As a result, performance can no longer be measured in MIPS (Millions of Instructions Per Second). A microcontroller's effectiveness is based on coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, the designer needs benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment.
Technical Paper

Non-standard CAN Network Topologies Verification at High Speed Transmission Rate using VHDL-AMS

2010-04-12
2010-01-0688
This paper considers the verification of non-standard CAN network topologies of the physical layer at high speed transmission rate (500.0Kbps and 1.0Mbps). These network topologies including single star, multiple stars, and hybrid topologies (multiple stars in combination with linear bus or with ring topology) are simulated by using behavior modeling language (VHDL-AMS) in comparison to measurement. Throughout the verification process, CAN transceiver behavioral model together with other CAN physical layer simulation components have been proved to be very accurate. The modeling of measurement environment of the CAN network is discussed, showing how to get the measurement and simulation results well matched. This demonstrates that the simulation solution is reliable, which is highly desired and very important for the verification requirement in CAN physical layer design.
Technical Paper

MultiCore Benefits & Challenges for Automotive Applications

2008-04-14
2008-01-0989
This paper will give an overview of multicore in automotive applications, covering the trends, benefits, challenges, and implementation scenarios. The automotive silicon industry has been building multicore and multiprocessor systems for a long time. The reasons for this choice have been: increased performance, safety redundancy, increased I/O & peripheral, access to multiple architectures (performance type e.g. DSP) and technologies. In the past, multiprocessors have been mainly considered as multi-die, multi-package with simple interconnection such as serial or parallel busses with possible shared memories. The new challenge is to implement a multicore, micro-processor that combines two or more independent processors into a single package, often a single integrated circuit (IC). The multicores allow a computing device to exhibit some form of thread-level parallelism (TLP).
Journal Article

DSI3 Sensor to Master Decoder using Symbol Pattern Recognition

2014-04-01
2014-01-0252
The newly released Distributed System Interface 3 (DSI3) Bus Standard specification defines three modulation levels form which 16 valid symbols are coded. This complex structure is best decoded with symbol pattern recognition. This paper proposes a simplification of the correlation score calculation that sharply reduces the required number of operations. Additionally, the paper describes how the pattern recognition is achieved using correlation scores and a decoding algorithm. The performance of this method is demonstrated by mean of simulations with different load models between the master and the sensors and varying noise injection on the channel. We prove than the pattern recognition can decode symbols without any error for up to 24dBm.
Journal Article

Mode-Dynamic Task Allocation and Scheduling for an Engine Management Real-Time System Using a Multicore Microcontroller

2014-04-01
2014-01-0257
A variety of methodologies to use embedded multicore controllers efficiently has been discussed in the last years. Several assumptions are usually made in the automotive domain, such as static assignment of tasks to the cores. This paper shows an approach for efficient task allocation depending on different system modes. An engine management system (EMS) is used as application example, and the performance improvement compared to static allocation is assessed. The paper is structured as follows: First the control algorithms for the EMS will be classified according to operating modes. The classified algorithms will be allocated to the cores, depending on the operating mode. We identify mode transition points, allowing a reliable switch without neglecting timing requirements. As a next step, it will be shown that a load distribution by mode-dependent task allocation would be better balanced than a static task allocation.
Journal Article

On-Chip Delta-Sigma ADC for Rotor Positioning Sensor Application (Resolver-to-Digital Converter)

2014-04-01
2014-01-0333
This paper discusses the RDC method utilizing delta-sigma analog-to-digital converter hardware module (DSADC) integrated in the Infineon's microcontroller family. With its higher resolution capability when compared to the regularly used ADC with successive-approximation (SAR), DSADC seems to have more potential. On the other hand, DSADC's inherent properties, such as asynchronous sampling rate and group delay, which when not handled properly, would have negative effects to the rotor positioning system. The solution to overcome those side-effects involves utilization of other internal microcontroller's resources such as timers and capture units, as well as additional software processing run inside CPU. The rotor positioning system is first modeled and simulated in high-level simulation language environment (Matlab and Simulink) in order to predict the transient- and steady state behaviors. The group delay itself is obtained by simulating the model of DSADC module implementation.
Technical Paper

In-vehicle Network Verification from Application to Physical Layer

2004-03-08
2004-01-0208
The verification of an in-vehicle network often requires to look at more than one level of abstraction at a time. At the moment, this is not addressed by existing methods, which are dedicated either to physical or application layer, but not both. This paper fills this gap by introducing a methodology to insert the protocol related software execution as well as the motor behavior into the physical layer mixed-signal (i.e. analog/digital) simulation. Electronics and mechanics are covered by the hardware description language VHDL-AMS, while the software is given in C.
Technical Paper

Diagnostic and Control Systems for Automotive Power Electronics

2001-03-05
2001-01-0075
The recent improvements in automotive electronics have had a tremendous impact on safety, comfort and emissions. But the continuous increase of the volume of electronic equipment in cars (representing more than 25% of purchasing volume) as well as the increasing system complexity represent a new challenge to quality, post-sales customer support and maintenance. Identifying a fault in a complex network of ECUs, where the different functions are getting more and more intricate, is not an easy task. It can be shown that with the levels of reliability common in 1980, an upper-range automobile of today could never function fault-free. On-Board-Diagnostics (OBD) concepts are emerging to assist the maintenance personnel in localizing the source of a problem with high accuracy, reducing the vehicle repair time, repair costs and costs of warranty claims.
Technical Paper

Integrated Mechatronic Design and Simulation of a Door Soft Close Automatic with Behavioral Models of Smart Power ICs

2002-03-04
2002-01-0564
Based on the example of a door soft close automatic the potential of integrated system simulation in the automotive systems development is demonstrated. The modeling approach is covering several physical domains like mechanics, electromagnetics and semiconductor physics. With adequate simplifying methods a time efficient model is generated, which allows system optimization in the concept phase. Time consuming redesigns can thus be minimized.
X