Refine Your Search

Topic

Author

Search Results

Technical Paper

Integrated Mechatronic Design and Simulation of a Door Soft Close Automatic with Behavioral Models of Smart Power ICs

2002-03-04
2002-01-0564
Based on the example of a door soft close automatic the potential of integrated system simulation in the automotive systems development is demonstrated. The modeling approach is covering several physical domains like mechanics, electromagnetics and semiconductor physics. With adequate simplifying methods a time efficient model is generated, which allows system optimization in the concept phase. Time consuming redesigns can thus be minimized.
Technical Paper

The BRAKE Project - Centralized Versus Distributed Redundancy for Brake-by-Wire Systems

2002-03-04
2002-01-0266
This paper presents the objectives and preliminary results of the BRAKE project - a joint effort of Delphi Automotive Systems, Infineon Technologies, Volvo Car Corporation and WindRiver. The objective of this project is to use microelectronics technologies to design a distributed Brake-by-Wire system including: A distributed fault tolerant system for enhanced safety An extension of the OSEK based operating system for a distributed time triggered architecture An open interface between vehicle control, and brake system control The results comprise the requirements, interface specification (see [1]), a full simulation model, a hardware-in-the-loop bench, and a demonstration vehicle. The application has been developed using advanced automatic code generation for Infineon's TriCore based automotive microcontrollers.
Technical Paper

Smart IGBT for Advanced Ignition Systems

2001-03-05
2001-01-1220
Increasing fuel costs and emission regulations force the car manufacturers to develop powerful but efficient engines. The 3-liter car (3-liter/100 km fuel consumption → 80 miles/gallon) is one of the slogans. To fulfill these requirements a fully electronic controlled Engine Management is necessary. Carburetor systems are replaced by fuel injection systems. Direct injection for Diesel as well as for gasoline engines is the clear trend for the future. The mechanical throttle systems, used for a long time will not fit to the requirements of direct injection. A DC motor for electronic throttle control in conjunction with λ regulation and exhaust gas recirculation are the key elements for low emission cars. Also the automotive ignition system is in a process of change today.
Technical Paper

MultiCore Benefits & Challenges for Automotive Applications

2008-04-14
2008-01-0989
This paper will give an overview of multicore in automotive applications, covering the trends, benefits, challenges, and implementation scenarios. The automotive silicon industry has been building multicore and multiprocessor systems for a long time. The reasons for this choice have been: increased performance, safety redundancy, increased I/O & peripheral, access to multiple architectures (performance type e.g. DSP) and technologies. In the past, multiprocessors have been mainly considered as multi-die, multi-package with simple interconnection such as serial or parallel busses with possible shared memories. The new challenge is to implement a multicore, micro-processor that combines two or more independent processors into a single package, often a single integrated circuit (IC). The multicores allow a computing device to exhibit some form of thread-level parallelism (TLP).
Technical Paper

In-vehicle Network Verification from Application to Physical Layer

2004-03-08
2004-01-0208
The verification of an in-vehicle network often requires to look at more than one level of abstraction at a time. At the moment, this is not addressed by existing methods, which are dedicated either to physical or application layer, but not both. This paper fills this gap by introducing a methodology to insert the protocol related software execution as well as the motor behavior into the physical layer mixed-signal (i.e. analog/digital) simulation. Electronics and mechanics are covered by the hardware description language VHDL-AMS, while the software is given in C.
Technical Paper

Diagnostic and Control Systems for Automotive Power Electronics

2001-03-05
2001-01-0075
The recent improvements in automotive electronics have had a tremendous impact on safety, comfort and emissions. But the continuous increase of the volume of electronic equipment in cars (representing more than 25% of purchasing volume) as well as the increasing system complexity represent a new challenge to quality, post-sales customer support and maintenance. Identifying a fault in a complex network of ECUs, where the different functions are getting more and more intricate, is not an easy task. It can be shown that with the levels of reliability common in 1980, an upper-range automobile of today could never function fault-free. On-Board-Diagnostics (OBD) concepts are emerging to assist the maintenance personnel in localizing the source of a problem with high accuracy, reducing the vehicle repair time, repair costs and costs of warranty claims.
Technical Paper

Safety Element out of Context - A Practical Approach

2012-04-16
2012-01-0033
ISO 26262 is the actual standard for Functional Safety of automotive E/E (Electric/Electronic) systems. One of the challenges in the application of the standard is the distribution of safety related activities among the participants in the supply chain. In this paper, the concept of a Safety Element out of Context (SEooC) development will be analyzed showing its current problematic aspects and difficulties in implementing such an approach in a concrete typical automotive development flow with different participants (e.g. from OEM, tier 1 to semiconductor supplier) in the supply chain. The discussed aspects focus on the functional safety requirements of generic hardware and software development across the supply chain where the final integration of the developed element is not known at design time and therefore an assumption based mechanism shall be used.
Technical Paper

Timing Correctness in Safety-Related Automotive Software

2011-04-12
2011-01-0449
Automotive applications classed as safety-related or safety-critical are now important differentiating technologies in the automotive industry. The emergence of safety standard ISO 26262 underlines the increasing importance of safety in automotive software. As well as functional requirements, hard real-time requirements are of crucial importance to safety-related software as there is a need to prove that the system functionality is fulfilled, even in worst-case scenarios. Measurement-based WCET (Worst-Case Execution Time) analysis combines on-target timing measurements with static analysis of program structure to calculate predicted worst-case paths and times. This is in contrast to traditional end-to-end timing measurements, which give no confidence that the worst-case path is actually tested and no insight into the location of any timing problems that do emerge.
Technical Paper

Advanced Gasoline Engine Management Platform for Euro IV & CHN IV Emission Regulation

2008-06-23
2008-01-1704
The increasingly stringent requirements in relation to emission reduction and onboard diagnostics are pushing the Chinese automotive industry toward more innovative solutions and a rapid increase in electronic control performance. To manage the system complexity the architecture will require being well structure on hardware and software level. The paper introduces GEMS-K1 (Gasoline Engine Management System - Kit 1). GEMS-K1 is a platform being compliant with Euro IV emission regulation for gasoline engines. The application software is developed using modeling language, the code is automatically generated from the model. The driver software has a well defined structure including microcontroller abstraction layer and ECU abstraction layer. The hardware is following design rules to be robust, 100% testable and easy to manufacture. The electronic components use the latest innovation in terms of architecture and technologies.
Technical Paper

Smart IGBT's for Advanced Distributed Ignition Systems

2004-03-08
2004-01-0518
Driven by factors like consumption, power output per liter, comfort and more stringent exhaust gas standards the powertain control area, has developed rapidly in the last decades. This trend has also brought with it many innovations in the ignition application. Today we can see a trend to Pencil-coil or Plug-top-coil ignition systems. The next step in system partitioning is to remove the power driver from the ECU and place it directly in/on the coil body. The advantages of the new partitioning - e.g. no high voltage wires, reduced power dissipation on the ECU - are paid with different, mainly tougher requirements for the electronic components. By using specialized technologies for the different functions - IGBT for switching the power, SPT for protection, supply and diagnostics - in chip-on-chip technology all required functions for a decentralized ignition system can be realized in a TO220/ TO263 package.
Technical Paper

Design Process Changes Enabling Rapid Development

2004-10-18
2004-21-0085
This paper will address the electronic development in the wireless industry and compare it to the electronic development in the automotive industry. The wireless industry is characterized by rapid, dramatic high tech changes with a less than two-year cycle time and an equivalent life cycle. The automotive electronics industry is working toward reducing the typical 2 to 3 year development cycle down 1 to 2 years but with a life cycle of 10 years or more. In addition to realizing the electronic development benefits seen in the wireless industry, the automotive industry places significantly more emphasis on the quality and reliability aspects of their designs as many of them are targeted toward, or interface with, safety critical applications. One of the lessons learned from the wireless industry is the development process; where the hardware selection process can be accomplished in a virtual environment in conjunction with concurrent software development.
Technical Paper

Cost Efficient Partitioning for New Generation of Automatic Transmission Gearbox Controllers

2006-04-03
2006-01-0403
This paper shall present advancements in electronic transmission control circuits addressing new challenges in the gearbox striving for improved vehicle efficiency and comfort of driving. Efficient chipset design, requires finding the optimal partitioning, that is the mapping of functionality to hardware or software and analog or digital circuit technology. The efficiency will be judged by minimal cost whilst achieving improved functionality and required scalability for a platform approach. Specific examples demonstrated are smart sensor architecture and new mapping of control strategies, realized with a novice integrated current control IC concept. Comparisons on system level are used to evaluate different function mappings as well as component partitioning. Details of the most optimized mapping and partitioning will be elaborated and first results of implementation in silicon components will be shown.
Technical Paper

Extended Qualification of Power MOSFET to Fulfill Today's Requirements of Automotive Applications

2006-04-03
2006-01-0592
This paper focuses on the requirements of electronic systems in automotive applications in terms of reliability and quality. As one of the most common devices in such applications for switching electronic loads, the power MOSFET, is investigated in detail. Today's qualification procedure for discrete devices according to AEC Q101 [1] will be explained and how this correlates to the stress of the device in the application. It will be pointed out what additional tests for “extended qualification” should be made to deal with critical failure modes reducing overly conservative safety margins and preventing excessive costs on the component side. The tests will be explained and the results presented.
Technical Paper

Cyber Security in the Automotive Domain – An Overview

2017-03-28
2017-01-1652
Driven by the growing internet and remote connectivity of automobiles, combined with the emerging trend to automated driving, the importance of security for automotive systems is massively increasing. Although cyber security is a common part of daily routines in the traditional IT domain, necessary security mechanisms are not yet widely applied in the vehicles. At first glance, this may not appear to be a problem as there are lots of solutions from other domains, which potentially could be re-used. But substantial differences compared to an automotive environment have to be taken into account, drastically reducing the possibilities for simple reuse. Our contribution is to address automotive electronics engineers who are confronted with security requirements. Therefore, it will firstly provide some basic knowledge about IT security and subsequently present a selection of automotive specific security use cases.
Technical Paper

Leveraging Hardware Security to Secure Connected Vehicles

2018-04-03
2018-01-0012
Advanced safety features and new services in connected cars depend on the security of the underlying vehicle functions. Due to the interconnection with the outside world and as a result of being an embedded system a modern vehicle is exposed to both, malicious activities as faced by traditional IT world systems as well as physical attacks. This introduces the need for utilizing hardware-assisted security measures to prevent both kinds of attacks. In this paper we present a survey of the different classes of hardware security devices and depict their different functional range and application. We demonstrate the feasibility of our approach by conducting a case study on an exemplary implementation of a function-on-demand use case. In particular, our example outlines how to apply the different hardware security approaches in practice to address real-world security topics. We conclude with an assessment of today’s hardware security devices.
Journal Article

Calculation of Failure Detection Probability on Safety Mechanisms of Correlated Sensor Signals According to ISO 26262

2017-03-28
2017-01-0015
Functional safe products conforming to the ISO 26262 standard are getting more important for automotive applications wherein electronic takes more and more response for safety relevant operations. Consequently safety mechanisms are needed and implemented in order to reach defined functional safety targets. To prove their effectiveness diagnostic coverage provides a measurable quantity. A straight forward safety mechanism for sensor systems can be established by redundant signal paths measuring the same physical quantity and subsequently performing an independent output difference-check that decides if the data can be transmitted or an error message shall be sent. This paper focuses on the diagnostic coverage figure calculation of such data correlation-checks for linear sensors which are also shown in ISO 26262 part5:2011 ANNEX D2.10.2.
Technical Paper

Analysis of Field-Stressed Power Inverter Modules from Electrified Vehicles

2015-04-14
2015-01-0421
This paper presents a reliability study of a directly cooled IGBT module after a test drive of 85,000 Km in a fuel cell electric vehicle, as well as of an indirectly cooled IGBT module after a test drive of 200,000km in a hybrid car on public roads. At the end of the test drive, the inverter units were disassembled and analyzed with regard to the lifetime consumption. First, electrical measurements were carried out and the results were compared with the ones obtained directly after module production (End of Line test). After that, ultrasonic microscopy was performed in order to investigate any delamination in the solder layers. As a third step, an optical inspection was performed to monitor damages in the housing, formation of cracks or degradation of wire bonds. The results show none of the depicted failure modes could be found on the tested power modules after the field test. Obviously, no significant life time consumption could be observed.
Technical Paper

Implementing Mixed Criticality Software Integration on Multicore - A Cost Model and the Lessons Learned

2015-04-14
2015-01-0266
The German funded project ARAMiS included work on several demonstrators one of which was a multicore approach on large scale software integration (LSSI) for the automotive domain. Here BMW and Audi intentionally implemented two different integration platforms to gain both experience and real life data on a Hypervisor based concept on one side as well as using only native AUTOSAR-based methods on the other side for later comparison. The idea was to obtain figures on the added overhead both for multicore as well as safety, based on practical work and close-to-production implementations. During implementation and evaluation on one hand there were a lot of valuable lessons learned about multicore in conjunction with safety. On the other hand valuable information was gathered to make it finally possible to set up a cost model for estimation of potential overhead generated by different integration approaches for safety related software functions.
Technical Paper

Non-Intrusive Tracing at First Instruction

2015-04-14
2015-01-0176
In recent years, we see more and more ECUs integrating a huge number of application software components. This process mostly results from the increasing amount of so called in-house software in various fields like electric-drive, chassis and driver assistance systems. The software development for these systems is partially moved from the supplier to the car manufacturers. Another important trend is the introduction of new network architectures intending to meet the growing communication requirements. For such ECUs the software integration scenarios become more complicated, as more quality of service requirements with regards to timing, safety and security need to be considered [2]. Multi-core microcontrollers offer even more potential variants for integration scenarios. Understanding the interaction between the different software components, not only from a functional, but also from a timing view, is a key success factor for modern electronic systems [6,7,8,9].
Technical Paper

Cost Efficient Integration for Decentralized Automotive ECU

2004-03-08
2004-01-0717
As the demand for enhanced comfort, safety and differentiation with new features continues to grow and as electronics and software enable most of these, the number of electronic units or components within automobiles will continue to increase. This will increase the overall system complexity, specifically with respect to the number of controller actuators such as e-motors. However, hard constraints on cost and on physical boundaries such as maximum power dissipation per unit and pin-count per unit/connector require new solutions to alternative system partitioning. Vehicle manufacturers, as well as system and semiconductor suppliers are striving for increased scalability and modularity to allow for most cost optimal high volume configurations while featuring platform reuse and feature differentiation. This paper presents new semiconductor based approaches with respect to technologies, technology mapping and assembly technologies.
X