Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Tailor-Made Fuels for Future Advanced Diesel Combustion Engines

2009-06-15
2009-01-1811
The finite nature and instability of fossil fuel supply has led to an increasing and enduring investigation demand of alternative and regenerative fuels. The Institute for Combustion Engines at the RWTH Aachen University carried out an investigation program to explore the potential of tailor made fuels to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. To enable optimum engine performance a range of different hydrocarbons having different fuel properties like cetane number, boiling temperature and different molecular compositions have been investigated. Paraffines and naphthenes were selected in order to better understand the effects of molecular composition and chain length on emissions and performance of an engine that was already optimized for advanced combustion performance. The diesel single-cylinder research engine used in this study will be used to meet Euro 6 emissions limits and beyond.
Technical Paper

Catalyst Aging Method for Future Emissions Standard Requirements

2010-04-12
2010-01-1272
This paper describes an alternative catalyst aging process using a hot gas test stand for thermal aging. The solution presented is characterized by a burner technology that is combined with a combustion enhancement, which allows stoichiometric and rich operating conditions to simulate engine exhaust gases. The resulting efficiency was increased and the operation limits were broadened, compared to combustion engines that are typically used for catalyst aging. The primary modification that enabled this achievement was the recirculation of exhaust gas downstream from catalyst back to the burner. The burner allows the running simplified dynamic durability cycles, which are the standard bench cycle that is defined by the legislation as alternative aging procedure and the fuel shut-off simulation cycle ZDAKW. The hot gas test stand approach has been compared to the conventional engine test bench method.
Technical Paper

Acoustics of Hybrid Vehicles

2010-06-09
2010-01-1402
The technology used in hybrid vehicle concepts is significantly different from conventional vehicle technology with consequences also for the noise and vibration behavior. In conventional vehicles, certain noise phenomena are masked by the engine noise. In situations where the combustion engine is turned off in hybrid vehicle concepts, these noise components can become dominant and annoying. In hybrid concepts, the driving condition is often decoupled from the operation state of the combustion engine, which leads to unusual and unexpected acoustical behavior. New acoustic phenomena such as magnetic noise due to recuperation occur, caused by new components and driving conditions. The analysis of this recuperation noise by means of interior noise simulation shows, that it is not only induced by the powertrain radiation but also by the noise path via the powertrain mounts. The additional degrees of freedom of the hybrid drive train can also be used to improve the vibrational behavior.
Technical Paper

The Impact of new Technologies and Tools on the Vehicle and Engine Development Process

2001-03-05
2001-01-0771
Technological progress opens the door for the development of new tools to be used for the development of vehicles and engines. This offers the opportunity for an optimization of the entire workflow on one hand, and an improvement of single tasks on the other hand. This paper describes the actual status of the development process, describes new directions of tool evolvement and finally gives an outlook into the future. Redline ADAPT-SIM is a tool for driver- and vehicle simulation, which was developed primarily for ECU application, but can also be used for other dynamic testing tasks. The introduction of this tool leads to better controllability and therefore also repeatability of tests.
Technical Paper

Fleet Economics Analysis-CleanFleet Alternative Fuels Project

1995-02-01
950395
Economics is one of several key factors that must be considered by fleet operators and other decision makers as they move towards initiating or increasing the use of various alternative fuels in their fleet applications. Accordingly, the CleanFleet demonstration project was structured to generate and present a full set of comparable cost information for several of the leading alternative fuels. The cost information included the costs to acquire and modify vehicles, personnel training, facility modifications, capital and operating costs for fueling stations, and vehicle operating costs. These costs were used as the starting point for an analysis of the costs that a fleet operator might face in the 1996 time frame for implementing the use of compressed natural gas, propane gas, Phase 2 reformulated gasoline, or methanol (M-85). The cost estimates were incorporated into a popular spread-sheet used on personal computers to facilitate examining various options available to fleets.
Technical Paper

Research Alliances, A Strategy for Progress

1995-09-01
952146
In today's business climate rapid access to, and implementation of, new technology is essential to enhance competitive advantage. In the past, universities have been used for research contracts, but to fully utilize the intellectual resources of education institutions, it is essential to approach these relationships from a new basis: alliance. Alliances permit both parties to become active participants and achieve mutually beneficial goals. This paper will examine the drivers and challenges for industrial -- university alliances from both the industrial and academic perspectives.
Technical Paper

Dynamic Vehicle Simulation to Evaluate Countermeasure Systems for Run-Off-Road Crashes

1996-02-01
960517
An important part of ITS (Intelligent Transportation Systems, formerly IVHS) is the development of collision avoidance systems. These systems continuously sense the dynamic state of the vehicle and the roadway situation, and they assess the potential for a collision. When the system determines that an emergency situation might be developing, it warns the driver to take evasive action. Such countermeasure systems must be subjected to rigorous testing to ensure reasonable performance in all foreseeable circumstances and effectiveness in reducing the incidence of collisions. The efficiency and safety of testing can be greatly enhanced by using a dynamic simulation of a vehicle in near-collision situations and “equipping” the vehicle with a proposed collision avoidance system. This paper discusses the development and application of a time-domain simulation code based on a dynamic model of the driver/vehicle/counter-measure system.
Technical Paper

Survey of Potential Safety Issues with Hydrogen-Powered Vehicles

2006-04-03
2006-01-0327
Hydrogen-powered vehicles offer the promise of significantly reducing the amount of pollutants that are expelled into the environment on a daily basis by conventional hydrocarbon-fueled vehicles. While very promising from an environmental viewpoint, the technology and systems that are needed to store the hydrogen (H2) fuel onboard and deliver it to the propulsion system are different from what consumers, mechanics, fire safety personnel, the public, and even engineers currently know and understand. As the number of hydrogen vehicles increases, the likelihood of a rollover or collision of one of these vehicles with another vehicle or a barrier will also increase.
X