Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Determination of the Cylinder Head Valve Bridge Temperatures in the Concept Phase Using a Novel 1D Calculation Approach

2010-04-12
2010-01-0499
The steady increase of engine power and the demand of lightweight design along with enhanced reliability require an optimized dimensioning process, especially in cylinder head valve bridge, which is progressively prone to cracking. The problems leading to valve bridge cracking are high temperatures and temperature gradients on one hand and high mechanical restraining on the other hand. The accurate temperature estimation at the valve bridge center has significant outcomes for valve bridge thickness and width optimization. This paper presents a 1D heat transfer model, which is constructed through the cross section of the valve bridge center by the use of well known quasi-stationary heat convection and conduction equations and reduced from 3D to 1D via regression and empirical weighting coefficients. Several diesel engine cylinder heads with different application types and materials are used for model setup and verification.
Technical Paper

Mechanical Testing - Still Necessary!

2007-04-16
2007-01-1768
Over the last decades, the use of computers has become an integral part of the engine development process. Computer-based tools are increasingly used in the design process, and especially the layout of the various subsystems is conducted by means of simulation models. Computer-aided engineering plays a central role e.g. in the design of the combustion process as well as with regards to work performed in the area of engine mechanics, where CFD, FEM, and MBS are applied. As a parallel trend, it can be observed that various engine performance characteristics such as e.g. the specific power output and the power-to-weight ratio have undergone an enormous increase, a trend which to some extent counteracts the increase in safety against malfunction and failure. As yet, due to the constant need for further optimization, mechanical testing and verification processes have not become redundant, and it is assumed that they will remain indispensable for the foreseeable future.
Technical Paper

Modeling and Analysis of Microstructure Development in Resistance Spot Welds of High Strength Steels

1998-09-29
982278
In this study, an incrementally coupled finite element analysis procedure is used to analyze the electrical, thermal, and mechanical interaction during resistance spot welding processes. The results of the finite element analysis are validated by experimental measurements of the weld nugget sizes and dynamic resistance. The temperature results from the thermo-electric analysis are used as the input for the prediction of the microstructure evolution in the resistance spot welds of high strength steels. Consequently such welding parameters as welding current, electrode force, electrode designs, cooling water temperature and flow rate, and electrode holding time can be linked with the weld nugget size, microstructure and mechanical properties in spot welds, and eventually the residual stresses and performance of spot welded structures.
Technical Paper

A New Approach for Prediction of Crankshaft Stiffness and Stress Concentration Factors

2010-04-12
2010-01-0949
This paper introduces a new approach based on a statistical investigation and finite element analysis (FEA) methodology to predict the crankshaft torsional stiffness and stress concentration factors (SCF) due to torsion and bending which can be used as inputs for simplified crankshaft multibody models and durability calculations. In this way the reduction of the development time and effort of passenger car crankshafts in the pre-layout phase is intended with a least possible accuracy sacrifice. With the designated methodology a better approximation to reality is reached for crank torsional stiffness and SCF due to torsion and bending compared with the empirical approaches, since the prediction does not depend on the component tests with limited numbers of specimen, as in empirical equations, but on various FE calculations.
Technical Paper

Survey of Potential Safety Issues with Hydrogen-Powered Vehicles

2006-04-03
2006-01-0327
Hydrogen-powered vehicles offer the promise of significantly reducing the amount of pollutants that are expelled into the environment on a daily basis by conventional hydrocarbon-fueled vehicles. While very promising from an environmental viewpoint, the technology and systems that are needed to store the hydrogen (H2) fuel onboard and deliver it to the propulsion system are different from what consumers, mechanics, fire safety personnel, the public, and even engineers currently know and understand. As the number of hydrogen vehicles increases, the likelihood of a rollover or collision of one of these vehicles with another vehicle or a barrier will also increase.
Technical Paper

Statistical Issues in the Evaluation of the Impact of Sulfur in Diesel Fuel on the Performance of Diesel Particulate Filter Emission Control Devices

2000-06-19
2000-01-1958
The Diesel Emission Control - Sulfur Effects (DECSE) program is a joint U.S. government/industry program that studies the impact of diesel sulfur levels on four types of emission control systems. One type of system, Diesel Particulate Filters (DPF), removes particulate matter (PM) from the exhaust stream by collection on a filter. The critical operating issue for DPF technology is the cleaning or regeneration of the control device (by oxidation of the collected PM) to prevent plugging. However, oxidation of sulfur in the exhaust forms sulfates, which are measured as PM. Two types of tests are conducted to evaluate the impacts of fuel sulfur on DPF performance: (1) emissions tests for PM components and gases, and (2) experiments to measure the effect of fuel sulfur on the regeneration temperature required by the filter devices.
Technical Paper

Fatigue Evaluation Procedure Development for Self-Piercing Riveted Joints Using the Battelle Structural Stress Method

2016-04-05
2016-01-0384
Lightweight, optimized vehicle designs are paramount in helping the automotive industry meet reduced emissions standards. Self-piercing rivets are a promising new technology that may play a role in optimizing vehicle designs, due to their superior fatigue resistance compared with spot welds and ability to join dissimilar materials. This paper presents a procedure for applying the mesh-insensitive Battelle Structural Stress Method to self-piercing riveted joints for fatigue life prediction. Additionally, this paper also examines the development of an interim fatigue design master S-N curve for self-piercing rivets. The interim fatigue design master S-N curve accounts for factors such as various combinations of similar and dissimilar metal sheets, various sheet thicknesses, stacking sequence, and load ratios. A large amount of published data was collapsed into a single interim S-N curve with reasonable data scattering.
X