Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Thermal Design of the Lunar Exploring Spacecraft

1997-07-01
972469
The thermal design of the LUNAR-A spacecraft, investigating the internal structure of the moon, is a challenge due to the widely varying thermal environments. A passive thermal control philosophy of radiators, multilayer insulation (MLI) and heaters was used for the LUNAR-A thermal design. Verification of the design was performed separately for the major spacecraft modules which consisted of a main structure, a propulsion subsystem and penetrators. As consequence, acceptable thermal performance can be expected for all phases of the mission. This paper describes the thermal design, analysis, thermal model testing and in-orbit temperature predictions.
Technical Paper

Development of a Flexible Thermal Control Device with High-Thermal-Conductivity Graphite Sheets

2003-07-07
2003-01-2471
This paper describes a new passive thermal control device-a Reversible Thermal Panel (RTP)-which changes its function reversibly from a radiator to a solar absorber by deploying/stowing the radiator/absorber reversible fin. The RTP consists of Highly Oriented Graphite Sheets (HOGSs), which have characteristics of high thermal conductivity, flexibility and light weight, as thermal transport units, which can transport the heat from equipment to reversible fin, and of a Shape - Memory Alloy (SMA) as a passively rotary actuator to deploy/stow the reversible fin. The RTP prototype model was designed and fabricated using HOGSs, a honeycomb base palate, and a prototype reversible rotary actuator. The heat rejection performance of the RTP as a radiator and the heat absorption performance as an absorber were evaluated by thermal vacuum tests and thermal analyses. The autonomous thermal controllability achieved using the prototype rotary actuator was also evaluated.
Technical Paper

Thermal Design of the MUSES-B Spacecraft

1995-07-01
951745
The MUSES-B spacecraft will be launched in 1996 by the Institute of Space and Astronautical Science (ISAS). Its primary mission is experiments on space Very Long Baseline Interferometry (VLBI) for radio astronomy using a large deployable antenna. A challenging thermal design must be compatible with a wide range of sun angle and an 86 minute eclipse. The thermal design and verification has been performed separately for the major modules of the spacecraft; a main structure, a deployable antenna and Reaction Control System (RCS). Special attention is paid to the exposed RCS whose solar input varies significantly depending on the sun angle. This paper describes the thermal design concept for MUSES-B and verification results of its thermal model test focusing on the main structure and the RCS.
Technical Paper

System Studies of Advanced Single-Phase Fluid Loop with Honeycomb-Cored Cold Plate

1999-07-12
1999-01-2091
The feasibility study of the thermal control system for medium size or large size satellites was conducted to investigate the capabilities and specifications of devices such as cold plates, a radiator, a mechanical pump, and so on. In the first step of the system development demonstration, the cold plate was selected to investigate the performance among these devices. In this paper, the system concept of the advanced single-phase fluid loop and the evaluation by numerical analysis and experiments are described.
X