Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Gear Whine Improvements for an Automatic Transmission through Design Retargeting and Manufacturing Variability Reduction

2001-04-30
2001-01-1505
Gear whine in 1st gear for an automatic transmission that has been in production for nearly thirty years was identified as an NVH issue. Due to advances in vehicle level refinement, and reduction of other masking noises, the automatic transmission gear whine became an issue with the customer. Since the transmission was already in production, the improvements had to be within the boundaries of manufacturing feasibility with existing equipment to avoid costly and time consuming investment in new machines. The approach used was one of identifying optimum values of existing gear parameters to provide a reduction in passenger compartment noise. The problem was in a light truck application. Objective noise measurements were recorded for 10 transmissions from more than 50 driven in vehicles. The transmissions were disassembled and the gears inspected.
Technical Paper

Gear Whine Reduction for a New Automatic Transmission

2001-04-30
2001-01-1506
Gear whine in 1st and 2nd gears in a new rear wheel drive automatic transmission was identified as a potential customer dis-satisfier. Improvements to the vehicle system were implemented, but did not sufficiently reduce the noise. CAE modeling and hardware testing were used for gear tooth optimization, transmission system, driveline, and vehicle system studies. The planetary gears were re-designed with increased contact ratio, and significant interior noise reduction was achieved; but some vehicles still had excessive noise due to gear parameter variability from multiple sources. Using a DOE and statistical studies, a set of gear parameter targets were identified within the tolerances of the design, which achieved the program objectives for noise.
Technical Paper

Gear Noise Reduction of an Automatic Transmission Through Finite Element Dynamic Simulation

1997-05-20
971966
Numerous authors have previously published on the effects of system dynamics on gear noise in automotive applications [1,2]. It is now widely understood that the torsional compliances and inertias of propeller shafts and pinion gear sets are a controlling factor in final drive gear noise for rear wheel drive vehicles. Considerable progress has been achieved in using finite element simulations of the driveline dynamics to improve the system in regards to gear noise. However very few published results are available showing the application of dynamic simulation methods to automatic transmissions which require considerations of the complications due to epicyclical gear sets. This paper documents the successful application of finite element dynamics modeling methods to the prediction of gear noise from the gear set in a rear wheel drive automatic transmission. The model was used to investigate the effects of component inertias, stiffnesses, and resonances.
X