Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

The Evolution of Electronic Engine Diagnostics

Software systems on electronically controlled diesel truck engines typically provide diagnostic features to enable the engine mechanic to identify and debug system problems. As future systems become more sophisticated, so will the diagnostic requirements. The advantages of serviceability and accuracy found in todays electronic systems must not be allowed to degrade due to this increased sophistication. One method of maintaining a high level of serviceability and accuracy is to place an even greater priority on diagnostics and servicing in the initial design phase of the product than is done today. In particular, three major goals of future diagnostic systems should be separation of component failures from system failures, prognostication of failures and analysis of engine performance. This paper will discuss a system to realize these goals by dividing the diagnostic task into the Electronic System Diagnostics, Engine System Diagnostics and the Diagnostic Interface.
Technical Paper

Transmission Modulating Valve Simulation and Simulation Verification

This paper presents a response to the question: Simulation - mathematical manipulation or useful design tool? A mathematical model of a modulating valve in a transmission control system was developed to predict clutch pressure modulation characteristics. The transmission control system was previously reported in SAE Paper 850783 - “Electronic/Hydraulic Transmission Control System for Off-Highway Vehicles”. The comparison of simulation predictions with test data illustrates the effectiveness of simulation as a design tool. THE EVOLUTION OF COMPUTER hardware and simulation software has resulted in increased interest and usage of simulation for dynamic analysis of hydraulic systems. Most commercially available software is relatively easy to learn to use. The application of such software and the modeling techniques involved require a longer learning curve.
Technical Paper

Engine Electronics Technology

Electronics technology has evolved significantly since the first electronically controlled heavy duty on-highway truck engines were introduced in the mid 1980's. Engine control hardware, software, and sensor designs have been driven by many factors. Emissions regulations, fuel economy, engine performance, operator features, fleet management information, diagnostics, vehicle integration, reliability, and new electronics technology are some of those factors. The latest engine electronics technology is not only found in heavy duty on-highway trucks, but in off-highway applications as well. Track-type tractors, haul trucks, wheel loaders, and agricultural tractors now benefit from the advantages of electronic engines. And, many more new applications are being developed.
Technical Paper

The Design and Testing of a Computer-Controlled Cooling System for a Diesel-Powered Truck

The hardware and software for a prototype computer controlled cooling system for a diesel powered truck has been designed and tested. The basic requirements for this system have been defined and the control functions, previously investigated in a study using the computer simulation model, were incorporated into the software. Engine dynamometer tests on the MACK-676 engine, comparing the conventional cooling system and the computer controlled system, showed the following advantages of the computer controlled system: 1. The temperature level to which the engine warms up to at low ambient temperature, was increased. 2. The faster shutter response reduced the temperature peaks and decreased total fan activity time. 3. The faster fan response reduces fan engagement time which should improve truck fuel economy.
Technical Paper

Physical to Functional Mapping with Mindmap Software

This paper describes how mind mapping software can help to visualize: System performance requirements Product attributes that satisfy performance requirements Mapping between performance requirements and product attributes An example is given using a partial model for vehicle performance developed by the International Truck and Engine Corporation. The mind map software used in this study is Mind Manager Pro version 6 by Mindjet. Anecdotal evidence is offered for the benefits and challenges of implementing a visual Mind Map scheme; however, the judgment of overall effectiveness is left to the reader.
Technical Paper

Summary and Characteristics of Rotating Machinery Digital Signal Processing Methods

Several very different order tracking and analysis techniques for rotating equipment have been developed recently that are available in commercial noise and vibrations software packages. Each of these order tracking methods has distinct trade-offs for many common applications and very specific advantages for special applications in sound quality or noise and vibrations troubleshooting. The Kalman, Vold-Kalman, Computed Order Tracking, and the Time Variant Discrete Fourier Transform as well as common FFT based order analysis methods will all be presented. The strengths and weaknesses of each of the methods will be presented as well as the highlights of their mathematical properties. This paper is intended to be an overview of currently available technology with all methods presented in a common format that allows easy comparison of their properties. Several analytical examples will be presented to thoroughly document each methods' behavior with different types of data.
Technical Paper

Understanding the Kalman/Vold-Kalman Order Tracking Filters' Formulation and Behavior

The Kalman and Vold-Kalman order tracking filters have been implemented in commercial software since the early 90's. There are several mathematical formulations of filters that have been implemented by different software vendors. However, there have not been any papers that have been published which sufficiently explain the math behind these filters and discuss the actual implementations of the filters in software. In addition, upon generating the equations represented by these filters, solving the equations for datasets in excess of several hundred thousand datapoints is not trivial and has not been discussed in the literature. The papers which have attempted to cover these topics are generally vague and overly mathematically eloquent but not easily understandable by a practicing engineer.
Technical Paper

Implementation of the Time Variant Discrete Fourier Transform as a Real-Time Order Tracking Method

The Time Variant Discrete Fourier Transform was implemented as a real-time order tracking method using developed software and commercially available hardware. The time variant discrete Fourier transform (TVDFT) with the application of the orthogonality compensation matrix allows multiple tachometers to be tracked with close and/or crossing orders to be separated in real-time. Signal generators were used to create controlled experimental data sets to simulate tachometers and response channels. Computation timing was evaluated for the data collection procedure and each of the data processing steps to determine how each part of the process affects overall performance. Many difficulties are associated with a real-time data collection and analysis tool and it becomes apparent that an understanding of each component in the system is required to determine where time consuming computation is located.
Technical Paper

Systems Engineering Efforts - What, When and How Much?

This paper describes the electrical system development for the headlight feature in an International High Performance Vehicle. Systems engineers developed several iterations of functional requirements, functional block diagrams, state diagrams, and body controller software requirements early in the development cycle at considerable engineering expense. The hardware design team found the functional block diagrams useful, however the software design team did not find the other artifacts useful. The software design teams chose to implement a design that was very similar to a current product offering and did not map to the system proposed by the systems engineering team. This paper provides examples of the Systems Engineering artifacts and shows when they were developed in the project timeline.
Technical Paper

Design & Validation of Low-Cost Sound Intensity Probe

Sound intensity measurement techniques, that used a two-microphone setup, were first developed in the late 1970s. Back then, the focus was on improving precision during testing or post-processing because the equipment available was inherently inaccurate. However, with the advent of modern, sophisticated equipment, the focus has shifted to the apparatus. Availability of phase-matched microphones has made post-test correction obsolete as the microphones eliminate a majority of the errors before the data is even collected. This accuracy, however, comes at a price, as phase-matched microphones are highly priced. This paper discusses employing the method of improving post-processing precision, using inexpensive, current equipment. The phase error of the system is corrected using a simple calibration technique and a handheld phase calibrator that is similar to the one used for amplitude calibration of microphones.