Refine Your Search

Topic

Author

Search Results

Technical Paper

Representing SUV as a 2D Beam Carrying Spring-Mass Systems to Compute Powertrain Bounce Mode

2021-08-31
2021-01-1116
Accurate prediction of in-vehicle powertrain bounce mode is necessary to ensure optimum responses are achieved at driver’s touch points during 4post shake or rough road shake events. But, during the early stages of vehicle development, building a detailed vehicle finite element (FE) model is not possible and often powertrain bounce modes are computed assuming the powertrain to be a stand-alone unit. Studies conducted on FE models of a large SUV with body on frame architecture showed that the stand-alone approach overestimates the powertrain bounce mode. Consequently, there is a need for a simplified version of vehicle model which can be built early on to compute powertrain modes. Previously, representing all the major components as rigid entities, simplified unibody vehicle models have been built to compute powertrain modes. But such an approach would be inaccurate here, for a vehicle with body on frame architecture due to the flexible nature of the frame (even at low frequencies).
Journal Article

A Case Study on Clean Side Duct Radiated Shell Noise Prediction

2017-03-28
2017-01-0444
Engine air induction shell noise is a structure borne noise that radiates from the surface of the air induction system. The noise is driven by pulsating engine induction air and is perceived as annoying by vehicle passengers. The problem is aggravated by the vehicle design demands for low weight components packaged in an increasingly tight under hood environment. Shell noise problems are often not discovered until production intent parts are available and tested on the vehicle. Part changes are often necessary which threatens program timing. Shell noise should be analyzed in the air induction system design phase and a good shell noise analytical process and targets must be defined. Several air induction clean side ducts are selected for this study. The ducts shell noise is assessed in terms of material strength and structural stiffness. A measurement process is developed to evaluate shell noise of the air induction components. Noise levels are measured inside of the clean side ducts.
Technical Paper

3rd Generation AHSS Virtual and Physical Stamping Evaluation

2020-04-14
2020-01-0757
Developing lightweight, stiff and crash-resistant vehicle body structures requires a balance between part geometry and material properties. High strength materials suitable for crash resistance impose geometry limitations on depth of draw, radii and wall angles that reduce geometric efficiency. The introduction of 3rd generation Advanced High Strength Steels (AHSS) can potentially change the relationship between strength and geometry and enable simultaneous improvements in both. This paper will demonstrate applicability of 3rd generation AHSS with higher strength and ductility to replace the 780 MPa Dual Phase steel in a sill reinforcement on the current Jeep Cherokee. The focus will be on formability, beginning with virtual simulation and continuing through a demonstration run on the current production stamping tools and press.
Technical Paper

Adaptive Sampling in the Design Space Exploration of the Automotive Front End Cooling Flow

2020-04-14
2020-01-0149
One of the key inputs 1-D transient simulation takes is a detailed front end cooling flow map. These maps that are generated using a full vehicle Three-dimensional Computational Fluid Dynamics (3D CFD) model require expensive computational resources and time. This paper describes how an adaptive sampling of the design space allowed the reduction of computational efforts while keeping desired accuracy of the analysis. The idea of the method was to find a pattern of Design of Experiments (DOE) sampling points for 3D CFD simulations that would allow a creation of an approximation model accurate enough to predict output parameter values in the entire design space of interest. Three procedures were implemented to get the optimal sampling pattern.
Technical Paper

Frame Structure Durability Development Methodology for Various Design Phases

2020-04-14
2020-01-0196
It is a challenging task to find an optimal design concept for a truck frame structure given the complexity of loading conditions, vehicle configurations, packaging and other requirements. In addition, there is a great emphasis on light weight frame design to meet stringent emission standards. This paper provides a framework for fast and efficient development of a frame structure through various design phases, keeping durability in perspective while utilizing various weight reduction techniques. In this approach frame weight and stiffness are optimized to meet strength and durability performance requirements. Fast evaluation of different frame configurations during the concept phase (I) was made possible by using DFSS (Design for Six Sigma) based system synthesis techniques. This resulted in a very efficient frame ladder concept selection process.
Technical Paper

Robust Assessment of Automotive Door Structure by Considering Manufacturing Variations

2020-04-14
2020-01-0910
The automotive door structure experience various static and dynamic loading conditions while going through an opening and closing operation. A typical swing door is attached to the body with two hinges and a check strap. These mechanisms carry the loads while the door is opened. Similarly, while closing the door, the latch/striker mechanism along with the seal around the periphery of the door react all loads. Typically, computer aided engineering (CAE) simulations are performed considering a nominal manufacturing (or build) tolerance condition, that results in one loading scenario. But while assembling the door with the body, the build variations in door mechanisms mentioned above can result in different loading scenarios and it should be accounted for design evaluation. This paper discusses various build tolerances and its effect on door durability performances to achieve a robust door design.
Technical Paper

Application of Laminated Steels for Stamped Bumpers

2020-04-14
2020-01-1055
Light-weight solutions for stamped steel components that exhibit the same or similar appearance properties for purposes of authentic feel and perception to customers will play a critical role as the progress towards reaching maximum fuel efficiency for large vehicles continues. This paper outlines the potential uses for laminated steel in large stamped steel bumper applications that would normally be stamped with thick sheet metal in order to meet vehicle level functional objectives. The paper presents the investigation of the one-for-one drop-in capabilities of the laminate steel material to existing stamping dies, special processing considerations while manufacturing, vehicle level performance comparisons, and class “A” coating options and process needs. Most of all, it will highlight the significant vehicle weight saving benefits and opportunities as compared to current production stamped steel bumpers.
Technical Paper

Enhanced Windshield CAE NVH Model for Interior Cabin Noise

2020-04-14
2020-01-1100
This paper describes a reliable CAE methodology to model the linear vibratory behavior of windshields. The windshield is an important component in vehicle NVH performance. It plays an integral role in interior cabin noise. The windshield acts as a large panel typically oriented near vertical at the front of vehicle’s acoustic cavity, hence modeling it accurately is essential to have a reliable prediction of cabin interior noise. The challenge to model the windshield accurately rises from the structural composition of different types of windshields. For automotive applications, windshields come in several structural compositions today. In this paper, we will discuss two types of windshield glass used primarily by automotive manufacturers. First type is the typical laminated glass with polyvinyl butyral (PVB) layer and second type is the acoustic glass with PVB and vinyl layers. Acoustic glass improves acoustic characteristics of the glass in a frequency range of ~ 1200 Hz to ~4000 Hz.
Technical Paper

Parametric Modelling and Performance Analysis of HVAC Defroster Duct Using Robust Optimization Methodology

2020-04-14
2020-01-1250
Nowadays development of automotive HVAC is a challenging task wherein thermal comfort and safety are very critical factors to be met. HVAC system is responsible for the demisting and defrosting of the vehicle’s windshield and for creating/maintaining a pleasing environment inside the cabin by controlling airflow, velocity, temperature and purity of air. Fog or ice which forms on the windshield is the main reason for invisibility and leads to major safety issues to the customers while driving. It has been shown that proper clear visibility for the windshield could be obtained with a better flow pattern and uniform flow distribution in the defrost mode of the HVAC system and defrost duct. Defroster performance has received significant attention from OEMs to meet the specific global performance standards of FMVSS103 and SAE J902. Therefore, defroster performance is seriously taken into consideration during the design of HVAC system and defroster duct.
Technical Paper

A New Weight Reduction Lightening Holes Development Approach Based on Frame Durability Fatigue Performance

2017-03-28
2017-01-1348
For a light duty truck, the frame is a structural system and it must go through a series of proving ground events to meet fatigue performance requirement. Nowadays, in order to meet stringent CAFE standards, auto manufacturers are seeking to keep the vehicle weight as light as possible. The weight reduction on the frame is a challenging task as it still needs to maintain the strength, safety, and durability fatigue performance. CAE fatigue simulation is widely used in frame design before the physical proving ground tests are performed. A typical frame durability fatigue analysis includes both the base metal fatigue analysis and seam weld fatigue analysis. Usually the gauges of the frame components are dictated by the seam weld fatigue performance so opportunities for weight reduction may exist in areas away from the welds. One method to reduce frame weight is to cut lightening holes in the areas that have little impact on the frame fatigue performance.
Technical Paper

Simplified Approach for Optimizing Lightening Holes in Truck Frames for Durability Performance

2017-03-28
2017-01-1345
During development of new vehicles, CAE driven optimizations are helpful in achieving the optimal designs. In the early phase of vehicle development there is an opportunity to explore shape changes, gage reduction or alternative materials as enablers to reduce weight. However, in later phases of vehicle development the window of opportunity closes on most of the enablers discussed above. The paper discusses a simplified methodology for reducing the weight in design cycle for truck frames using parametric Design of Experiments (DOE). In body-on-frame vehicles, reducing the weight of the frame in the design cycle without down gaging involves introducing lightening holes or cutouts while still maintaining the fatigue life. It is also known that the lightening holes might cause stress risers and be detrimental to the fatigue life of the component. Thus the ability to identify cutout locations while maintaining the durability performance becomes very critical.
Technical Paper

Optimizing the Rear Fascia Cutline Based On Investigating Deviation Sources of the Body Panel Fit and Finish

2017-03-28
2017-01-1600
A vehicle’s exterior fit and finish, in general, is the first system to attract customers. Automotive exterior engineers were motivated in the past few years to increase their focus on how to optimize the vehicle’s exterior panels split lines quality and how to minimize variation in fit and finish addressing customer and market required quality standards. The design engineering’s focus is to control the deviation from nominal build objective and minimize it. The fitting process follows an optimization model with the exterior panel’s location and orientation factors as independent variables. This research focuses on addressing the source of variation “contributed factors” that will impact the quality of the fit and finish. These critical factors could be resulted from the design process, product process, or an assembly process. An empirical analysis will be used to minimize the fit and finish deviation.
Technical Paper

CAE Simulation of Automotive Door Upper Frame Deflection Using Aerodynamic Loads

2018-04-03
2018-01-0716
Upper frame deflection of automobile doors is a key design attribute that influences structural integrity and door seal performance as related to NVH. This is a critical customer quality perception attribute and is a key enabler to ensure wind noise performance is acceptable. This paper provides an overview of two simulation methodologies to predict door upper frame deflection. A simplified simulation approach using point loads is presented along with its limitations and is compared to a new method that uses CFD tools to estimate aerodynamic loads on body panels at various vehicle speeds and wind directions. The approach consisted of performing external aerodynamic CFD simulation and using the aerodynamic loads as inputs to a CAE simulation. The details of the methodology are presented along with results and correlation to experimental data from the wind tunnel.
Technical Paper

A Comprehensive Numerical Model for Numerical Simulation of Ice Accretion and Electro-Thermal Ice Protection System in Anti-icing and De-icing Mode, with an Ice Shedding Analysis

2023-06-15
2023-01-1463
This work presents a comprehensive numerical model for ice accretion and Ice Protection System (IPS) simulation over a 2D component, such as an airfoil. The model is based on the Myers model for ice accretion and extended to include the possibility of a heated substratum. Six different icing conditions that can occur during in-flight ice accretion with an Electro-Thermal Ice Protection System (ETIPS) activated are identified. Each condition presents one or more layers with a different water phase. Depending on the heat fluxes, there could be only liquid water, ice, or a combination of both on the substratum. The possible layers are the ice layer on the substratum, the running liquid film over ice or substratum, and the static liquid film between ice and substratum caused by ice melting. The last layer, which is always present, is the substratum. The physical model that describes the evolution of these layers is based on the Stefan problem. For each layer, one heat equation is solved.
Technical Paper

A Three-Dimensional Level-Set Front Tracking Technique for Automatic Multi-Step Simulations of In-Flight Ice Accretion

2023-06-15
2023-01-1467
This paper presents a novel fully-automatic remeshing procedure, based on the level-set method and Delaunay triangulation, to model three-dimensional boundary problems and generate a new conformal body-fitted mesh. The proposed methodology is applied to long-term in-flight ice accretion, which is characterized by the formation of extremely irregular ice shapes. Since ice accretion is coupled with the aerodynamic flow field, a multi-step procedure is implemented. The total icing exposure time is subdivided into smaller time steps, and at each time step a three-dimensional body-fitted mesh, suitable for the computation of the aerodynamic flow field around the updated geometry, is generated automatically. The methodology proposed can effectively deal with front intersections, as shown with a manufactured example.
Technical Paper

Optimization of Aluminum Sleeve Design for the tow eye Durability Using DFSS Approach

2023-04-11
2023-01-0092
The automotive industry is moving towards larger SUVs and also electrification is a need to meet the carbon neutrality target. As a result, we see an increase in overall gross vehicle weight (GVW), with the additional weight coming from the HV battery pack, electric powertrain, and other electrical systems. Tow-eye is an essential component that is provided with every vehicle to use for towing during an emergency vehicle breakdown. The tow-eye is usually connected to the retainer/sleeve available in the bumper system and towed using the recovery vehicle or other car with towing provision. Therefore, the tow-eye should meet the functional targets under standard operating conditions. This study is mainly for cars with bumper and tow-eye sleeves made of aluminum which is used in the most recent development of vehicles for weight-saving opportunities. Tow-eye systems in aluminum bumpers are designed to avoid any bending or buckling of the sleeve during towing for whatever the GVW loads.
Technical Paper

Vehicle Underbody Structural Performance Prediction During Waterfording Events Using A One Way Coupled CFD-CAE Approach

2023-04-11
2023-01-0609
Water fording events are one of the most challenging situations that vehicles undergo during their lifetime. During these events the underbody components (e.g. Front fascia, Bellypan, wheel liner etc.) are subject to very high loads. Typically, vehicle water fording tests are performed for various depths of water at prescribed vehicle speeds. Water fording tests are usually carried out during the proto phase of the vehicle development program to ensure acceptable performance. If issues are discovered, making changes to the fascia or body panels are typically very expensive. To avoid late changes, a fully virtual methodology was developed to facilitate vehicle water fording performance. The simulation is targeted to evaluate multiple aspects such as air induction system and estimation of hydrodynamic loads on body panel components.
Technical Paper

Characterization of Vertical Dynamics of a Multi-Purpose Tractor with Static and Dynamic Experimental Tests

2023-04-11
2023-01-0177
Multi-purpose agricultural tractors are vehicles that are usually used in rough paths and on off-road situations characterized by strong slope variations. The main feature of this kind of vehicles is the stability in working conditions to avoid overturning while it is on duty. This characteristic is given by the interaction between the suspension system and the vehicle frame. Due to the limited size of this kind of vehicle, the stability feature could be given by chassis deformation or using a two-piece frame connected by a spherical joint. This paper presents the validation of a numerical lumped-parameters model able to reproduce the vertical dynamics of a multi-purpose tractor featured by a yielding chassis. The unknown model parameters have been estimated firstly with static tests to study the vertical tire and suspension stiffnesses. The dynamic tests using a four-post-test rig have been performed to tune the unknown dynamic parameters.
Technical Paper

Novel Framework for the Robust Optimization of the Heat Flux Distribution for an Electro-Thermal Ice Protection System and Airfoil Performance Analysis

2023-06-15
2023-01-1392
We present a framework for the robust optimization of the heat flux distribution for an anti-ice electro-thermal ice protection system (AI-ETIPS) and iced airfoil performance analysis under uncertain conditions. The considered uncertainty regards a lack of knowledge concerning the characteristics of the cloud i.e. the liquid water content and the median volume diameter of water droplets, and the accuracy of measuring devices i.e., the static temperature probe, uncertain parameters are modeled as uniform random variables. A forward uncertainty propagation analysis is carried out using a Monte Carlo approach. The optimization framework relies on a gradient-free algorithm (Mesh Adaptive Direct Search) and three different problem formulations are considered in this work. Two bi-objective deterministic optimizations aim to minimize power consumption and either minimize ice formations or the iced airfoil drag coefficient.
Technical Paper

Cooling Capable Vehicle Front End Concepts Development: Response Surface Approach

2018-04-03
2018-01-1194
The paper describes a process for rapid development of cooling capable front-end concepts for a vehicle based on an architecture, and a tool (Vehicle Parametric Model for Cooling) developed to execute the process. The process involves upfront definition of allowable ranges of several parameters related to the vehicle front end that affect cooling. The tool is based on characterizing airflow through Computational Fluid Dynamics (CFD) simulations and engine coolant temperature through one-dimensional (1D) thermal balance methods over the architectural domain in the form of a multi-parameter Response Surface using the Approximation Model provided by Isight. The number of sampling points needed for the Approximation is minimized by employing Design of Experiments (DOE) methods, while ensuring sufficient accuracy consistent with the goals of intended use of the Tool.
X