Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Outwardly Opening Hollow-Cone Diesel Spray Characterization under Different Ambient Conditions

The combustion quality in modern diesel engines depends strictly on the quality of the air-fuel mixing and, in turn, from the quality of spray atomization process. So air-fuel mixing is strongly influenced by the injection pressure, geometry of the nozzle duct and the hydraulic characteristics of the injector. In this context, spray concepts alternative to the conventional multi-hole nozzles could be considered as solutions to the extremely high injection pressure increase to assure a higher and faster fuel-air mixing in the piston bowl, with the final target of increasing the fuel efficiency and reducing the engine emissions. The study concerns an experimental depiction of a spray generated through a prototype high-pressure hollow-cone nozzle, under evaporative and non-evaporative conditions, injecting the fuel in a constant-volume combustion vessel controlled in pressure and temperature up to engine-like gas densities in order to measure the spatial and temporal fuel patterns.
Journal Article

Development of Chemistry-Based Laminar Flame Speed Correlation for Part-Load SI Conditions and Validation in a GDI Research Engine

The detailed study of part-load conditions is essential to characterize engine-out emissions in key operating conditions. The relevance of part-load operations is further emphasized by the recent regulations such as the new WLTP standard. Combustion development at part-load operations depends on a complex interplay between moderate turbulence levels (low engine speed and tumble ratio), low in-cylinder pressure and temperature, and stoichiometric-to-lean mixture quality (to maximize fuel efficiency). From a modelling standpoint, the reduced turbulence intensity compared to full-load operations complicates the interaction between different sub-models (e.g., reconsideration of the flamelet hypothesis adopted by common combustion models). In this article, the authors focus on chemistry-based simulations for laminar flame speed of gasoline surrogates at conditions typical of part-load operations. The analysis is an extension of a previous study focused on full-load operations.
Technical Paper

Combined Experimental and Numerical Investigation of the ECN Spray G under Different Engine-Like Conditions

A detailed understanding of Gasoline Direct Injection (GDI) techniques applied to spark-ignition (SI) engines is necessary as they allow for many technical advantages such as increased power output, higher fuel efficiency and better cold start performances. Within this context, the extensive validation of multi-dimensional models against experimental data is a fundamental task in order to achieve an accurate reproduction of the physical phenomena characterizing the injected fuel spray. In this work, simulations of different Engine Combustion Network (ECN) Spray G conditions were performed with the Lib-ICE code, which is based on the open source OpenFOAM technology, by using a RANS Eulerian-Lagrangian approach to model the ambient gas-fuel spray interaction.
Journal Article

Water Injection: a Technology to Improve Performance and Emissions of Downsized Turbocharged Spark Ignited Engines

Knock occurrence and fuel enrichment, which is required at high engine speed and load to limit the turbine inlet temperature, are the major obstacles to further increase performance and efficiency of down-sized turbocharged spark ignited engines. A technique that has the potential to overcome these restrictions is based on the injection of a precise amount of water within the mixture charge that can allow to achieve important benefits on knock mitigation, engine efficiency, gaseous and noise emissions. One of the main objectives of this investigation is to demonstrate that water injection (WI) could be a reliable solution to advance the spark timing and make the engine run at leaner mixture ratios with strong benefits on knock tendency and important improvement on fuel efficiency.
Technical Paper

Analysis of the Impact of the Dual-Fuel Ethanol-Diesel System on the Size, Morphology, and Chemical Characteristics of the Soot Particles Emitted from a LD Diesel Engine

Nowadays, alcohol fuels are of increasing interest as alternative transportation biofuels even in compression ignition engines because they are oxygenated and producible in a sustainable way. In this paper, the experimental research activity was conducted on a single cylinder research engine provided with a modern architecture and properly modified in a dual-fuel (DF) configuration. Looking at ethanol the as one of the future environmental friendly biofuels experimental campaign was aimed to evaluate in detail the effect of the use of the ethanol as port injected fuel in diesel engine on the size, morphology, reactivity and chemical features of the exhaust emitted soot particles. The engine tests were chosen properly in order to represent actual working conditions of an automotive light-duty diesel engine. A proper engine Dual-Fuel calibration was set-up respecting prefixed limits on in-cylinder peak firing pressure, cylinder pressure rise, fuel efficiency and gaseous emissions.
Journal Article

Key Fuel Injection System Features for Efficiency Improvement in Future Diesel Passenger Cars

Diesel will continue to be an indispensable energy carrier for the car fleet CO2 emission targets in the short-term. This is particularly relevant for heavy-duty vehicles as for mid-size cars and SUVs. Looking at the latest technology achievements on the after-treatment systems, it can be stated that the concerning about the NOx emission gap between homologation test and real road use is basically solved, while the future challenge for diesel survival is to keep its competitiveness in the CO2 vs cost equation in comparison to other propulsion systems. The development of the combustion system design still represents an important leverage for further efficiency and emissions improvements while keeping the current excellent performance in terms of power density and low-end torque.
Technical Paper

Low Cetane Number Renewable Oxy-fuels for Premixed Combustion Concept Application: Experimental Investigation on a Light Duty Diesel Engine

This paper illustrates the results of an experimental study on the impact of a low cetane number (CN) oxygenated fuel on the combustion process and emissions of a light-duty (LD) single-cylinder research engine. In an earlier study, it was concluded that cyclic oxygenates consistently outperformed their straight and branched counterparts at equal oxygen content and with respect to lowering soot emissions. A clear correlation was reported linking soot and CN, with lower CN fuels leading to more favorable soot levels. It was concluded that a lower CN fuel, when realized by adding low reactive cyclic oxygenates to commercial diesel fuel, manifests in longer ignition delays and thus more premixing. Ultimately, a higher degree of premixing, in turn, was thought to suppress soot formation rates.
Technical Paper

Effects of Premixed Low Temperature Combustion of Fuel Blends with High Resistance to Auto-ignition on Performances and Emissions in a High Speed Diesel Engine

This paper reports results of an experimental investigation to demonstrate the potential to employ blends of fuels having low cetane numbers that can provide high resistance to auto-ignition to reduce simultaneously NOx and smoke. Because of the higher resistance to auto-ignition, blends of diesel and gasoline at different volume fraction may provide more time for the mixture preparation by increasing the ignition delay. The result produces the potential to operate under partially premixed low temperature combustion with lower levels of EGR without excessive penalties on fuel efficiency. In addition to the diesel fuel, the tested blends were mixed by the baseline diesel with 20% and 40% of commercial EURO IV 98 octane gasoline by volume, denoted G20 and G40. The experimental activity has been performed on a turbocharged, water cooled, DI diesel engine, equipped with a common rail injection system.