Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Towards On-Line Prediction of the In-Cylinder Pressure in Diesel Engines from Engine Vibration Using Artificial Neural Networks

2013-09-08
2013-24-0137
This study aims at building efficient and robust artificial neural networks (ANN) able to reconstruct the in-cylinder pressure of Diesel engines and to identify engine conditions starting from the signal of a low-cost accelerometer placed on the engine block. The accelerometer is a perfect non-intrusive replacement for expensive probes and is prospectively suitable for production vehicles. In this view, the artificial neural network is meant to be efficient in terms of response time, i.e. fast enough for on-line use. In addition, robustness is sought in order to provide flexibility in terms of operation parameters. Here we consider a feed-forward neural network based on radial basis functions (RBF) for signal reconstruction, and a feed-forward multi-layer perceptron network with tan-sigmoid transfer function for signal classification. The networks are trained using measurements from a three-cylinder real engine for various operating conditions.
Technical Paper

Investigation of Combustion Process in a Small Optically Accessible Two Stroke SI Engine

2013-09-08
2013-24-0131
The improvement in engines efficiency and reduction of emissions is the permanent aim of engine industry in order to meet European standards regulation. To optimize small internal combustion engines it is necessary to improve the basic knowledge of thermo-fluid dynamic phenomena occurring during the combustion. This paper describes the combustion process in an optically accessible two-stroke spark-ignition engine used in a commercial 43 cm3 chainsaw. Two different feeding systems were tested: standard and CWI one. The engine head was modified in order to allow the visualization of the combustion using endoscopic system coupled with a high spatial resolution ICCD camera. Flame front propagation was evaluated through an image processing procedure. The image visualization and chemiluminence allowed to follow the combustion process from the spark ignition to the exhaust phase at high engine speed. All the optical data were correlated with engine parameters and exhaust emissions.
Journal Article

Experimental Characterization of Diesel Combustion Using Glycerol Derived Ethers Mixtures

2013-09-08
2013-24-0104
In this paper the characteristics of a mixture of glycerol-based ethers usable in a compression ignition engine are investigated, in terms of efficiency and emissions. Alternative pathways for the energetic exploitation of biodiesel derived glycerol became of increasing interest as the biodiesel production was increased worldwide. Because of its detrimental physical and chemical properties, raw glycerol is hardly usable in conventional internal combustion engines (ICE). However, etherification of glycerol with tert-butyl alcohol and isobutylene allows obtaining a mixture mainly composed of higher glycerol ethers (GEM) suitable for compression ignition engines. Thus, the aim of this research study was to test a mixture of mono-, di- and tri-tert-butyl ethers of glycerol in blend with a commercial diesel fuel in a compression ignition engine, evaluating the fuel efficiency and the impact on the pollutant emissions.
Technical Paper

Experimental Analysis of a Natural Gas Fueled Engine and 1-D Simulation of VVT and VVA Strategies

2013-09-08
2013-24-0111
The paper deals with experimental testing of a natural gas fueled engine. Break Specific fuel Consumption (BSFC), Average Mass Flow Rate, Instantaneous Cylinder Pressure and some wall temperatures have been measured at some full and part load operating conditions. The results of this experimental activity, still in progress, have been used to calibrate a 1D-flow engine's model. Then the effects of some VVA strategies have been theoretically studied through the validated model. With the aim of maximizing the full load engine's torque, a genetic algorithm was used to calculate the optimized intake and exhaust valves timing angles. Various VVA strategies were compared at part-load in order to reduce brake specific fuel consumption.
Technical Paper

Modeling Pressure Oscillations under Knocking Conditions: A Partial Differential Wave Equation Approach

2010-10-25
2010-01-2185
In this work the authors present a model to simulate the in-cylinder pressure oscillations due to knock. Pressure oscillations are predicted by the explicit integration of a Partial Differential Wave Equation (PDWE) similar, in its structure, to the so-called “Equation of Telegraphy”. This equation differs mainly from the classical wave formulation for the presence of a loss term. The general solution of such equation is obtained by the Fourier method of variables separation. The integration space is a cylindrical acoustic cavity whose volume is evaluated at the knock onset. The integration constants are derived from the boundary and initial conditions. A novel approach is proposed to derive the initial condition for the derivative of the oscillating component of pressure. It descends, conceptually, from the integration of the linearized relation between the derivative of pressure versus time and the expansion velocity of burned gas.
Technical Paper

Combustion Process Investigation in a Small SI Engine using Optical Diagnostics

2010-10-25
2010-01-2262
Nowadays an elevated number of two, three and four wheels vehicles circulating in the world-wide urban areas is equipped with Port Fuel Injection Spark Ignition (PFI SI) engines. Their technological level is high, but a further optimization is still possible, especially at low engine speed and high load. To this purpose, the scientific community is now focused on deepening the understanding of thermo fluid dynamic phenomena that takes place in this kind of engine: the final purpose is to find key points for the reduction in engine specific fuel consumption and exhaust emissions without a decrease in performance. In this work, the combustion process was investigated in an optically accessible single cylinder PFI SI engine. It was equipped with the head, injection device and exhaust line of a commercial small engine for two-wheel vehicles, it had the same geometrical characteristics in terms of bore, stroke and compression ratio.
Technical Paper

UV-Visible Imaging of PCCI Engine Running with Ethanol/Diesel Fuel

2012-04-16
2012-01-1238
Premixed charge compression ignition (PCCI) has been shown to be a promising strategy to simultaneously reduce emissions while realizing improved fuel economy. PCCI combustion uses high levels of pre-combustion mixing to lower both NOx and soot emissions by ensuring low equivalence ratio and low flame temperatures. The high level of pre-combustion mixing results in a primarily kinetics controlled combustion process. In this work, optical diagnostics have been applied in a transparent DI diesel engine equipped with the head of Euro5 commercial engine and the last generation CR injection system. In order to realize the PCCI combustion the injection of neat ethanol has been performed in the intake manifold. The engine run in continuous way at 1500 rpm engine speed and commercial diesel fuel has been injected into the cylinder. The PCCI combustion has been analyzed by means of UV- Visible digital imaging and the mixing process, the autoignition of the charge have been investigated.
Technical Paper

Noise Prediction of a Multi-Cylinder Engine Prototype Using Multi-Body Dynamic Simulation

2011-09-11
2011-24-0216
In the paper a coupled Multi-Body and FEM-BEM methodology used to predict the noise radiated by a turbocharged 4-cylinder diesel engine prototype is described. A Multi-Body Dynamic Simulation (MBDS) of the engine has been carried out, simulating an engine speed sweep from 1500 to 4000 rpm, in order to determine the excitation force of the powertrain, and in particular to estimate the forces acting on the cylinder block. Thanks to the Multi-Body approach, the dynamics of the engine powertrain have been described taking into account both the effects of the burnt gas pressure during the combustion process and the inertia forces of the moving parts. Moreover to assess the real engine operating behaviour, both the crank and the block have been considered as flexible bodies.
Technical Paper

Use of Vibration Signal for Diagnosis and Control of a Four-Cylinder Diesel Engine

2011-09-11
2011-24-0169
In order to meet the stricter and stricter emission regulations, cleaner combustion concepts for Diesel engines are being progressively introduced. These new combustion approaches often requires closed loop control systems with real time information about combustion quality. The most important parameter for the evaluation of combustion quality in internal combustion engines is the in-cylinder pressure, but its direct measurement is very expensive and involves an intrusive approach to the cylinder. Previous researches demonstrated the direct relationship existing between in-cylinder pressure and engine block vibration signal and several authors tried to reconstruct the pressure cycle on the basis of information coming from accelerometers mounted on engine block. This paper proposes a method, based on the analysis of the engine vibration signal, for the diagnosis of combustion process in a Diesel engine.
Journal Article

Non-Intrusive Investigation in a Small GDI Optical Engine Fuelled with Gasoline and Ethanol

2011-04-12
2011-01-0140
The aim of this paper is the experimental investigation of the effect of direct fuel injection on the combustion process and pollutant formation in a spark ignition (SI) two-wheel engine. The engine is a 250cc single cylinder, four-stroke spark-ignition firstly equipped with a four-valve PFI head and then with GDI one operating with European commercial gasoline and Bio-ethanol. It is equipped with a wide sapphire window in the bottom of the chamber and quartz cylinder. In the combustion chamber, optical techniques based on 2D-digital imaging were used to follow the injection and flame propagation and spectroscopic measurements were carried out in order to evaluate the main radical species. Radical species such as OH and CH were detected and used to follow the chemical phenomena related to the fuel quality. Measurements were carried out at different engine speeds and combustion strategies based on different injection pressures.
Journal Article

Alternative Diesel Fuels Characterization in Non-Evaporating and Evaporating Conditions for Diesel Engines

2010-05-05
2010-01-1516
This paper reports the study of the effects of alternative diesel fuel and the impact for the air-fuel mixture preparation. The injection process characterization has been carried out in a non-evaporative high-density environment in order to measure the fuel injection rate and the spatial and temporal distribution of the fuel. The injection and vaporization processes have been characterized in an optically accessible single cylinder Common Rail diesel engine representing evaporative conditions similar to the real engine. The tests have been performed by means of a Bosch second generation common rail solenoid-driven fuel injection system with a 7-holes nozzle, flow number 440 cc/30s @100bar, 148deg cone opening angle (minisac type). Double injection strategy (pilot+main) has been implemented on the ECUs corresponding to operative running conditions of the commercial EURO 5 diesel engine.
Technical Paper

A 1,5 KW Electric Power Microcogeneration Unit Suitable for Domestic Applications

2011-09-11
2011-24-0108
The paper discusses the concept, specification and overall performance of a small microcogeneration unit of about 1,5 kW of electric power and about 4,5 kW of thermal power, suitable for domestic applications, designed at Istituto Motori CNR of Italy. This unit has been conceived specifically as a energy conversion system for houses, having in durability, electric and thermal efficiency the most important goals to be achieved. The paper starts by defining the state of art of small power microcogeneration units and then the ratio which leaded to the adoption of a single cylinder internal combustion engine derived from a motorcycle unit, in order to produce the above mentioned electric and thermal power. This is followed by an explanation of the main design characteristics of the system, with a discussion over the modified elements, made to enhance electric efficiency, emissions and durability and reduce, at the same time, cost coming from new design and manufacture.
Technical Paper

Optical Investigation of the Effect on the Combustion Process of Butanol-Gasoline Blend in a PFI SI Boosted Engine

2011-09-11
2011-24-0057
The addition of alcohol to conventional hydrocarbon fuels for a spark-ignition engine can increase the fuel octane rating and the power for a given engine displacement and compression ratio. In this work, the influence of butanol addition to gasoline was investigated. The experiments were performed in an optical ported fuel injection single-cylinder SI engine with an external boosting device. The engine was equipped with the head of a commercial SI turbocharged engine having the same geometrical specifications (bore, stroke and compression ratio). The effect of a blend of 20% of n-butanol and 80% of gasoline (BU20) on in-cylinder combustion process was investigated by cycle-resolved visualization. The engine worked at low speed, medium boosting and wide open throttle. Changes in spark timing and fuel injection phasing were considered. Comparisons between the flame luminosity and the combustion pressure data were performed.
Technical Paper

Design for an Optically Accessible Multicylinder High Performance GDI Engine

2011-09-11
2011-24-0046
In this paper, the modifications realized to make optically accessible a commercial high performance spark ignition and direct injection (DI) 4-cylinder engine are reported. The engine has been designed trying to keep as much as possible its thermo-fluid dynamic configuration in order to maintain its performance and emissions. Two optical accesses have been realized in order to interfere as little as possible with the combustion chamber geometry. A first optical access has been achieved in the piston head and a second by inserting an endoscopic fiber probe in the head. Preliminary results demonstrated that this optical assessment responds to the design targets and allowed a characterization of a commercial GDI engine working with homogeneous and stratified charge mode.
Technical Paper

IR Imaging of Premixed Combustion in a Transparent Euro5 Diesel Engine

2011-09-11
2011-24-0043
In the present paper, infrared (IR) measurements were performed in order to study the development of injection and combustion in a transparent Euro 5 diesel engine operating in premixed mode. An elongated single-cylinder engine equipped with the multi-cylinder head of commercial passenger car and with common rail (CR) injection system, respectively, was used. A sapphire window was set in the bottom of the combustion chamber, and a sapphire ring was placed between the head and the top of the cylinder line. Measurements were carried out through both accesses by a new high-speed infrared (IR) digital imaging system obtaining information that was difficult to achieve by the conventional UV-visible camera. IR camera was able to detect the emitted light in the wavelength range 1.5-5 μm that is relevant for the emission bands of CO₂ and H₂O. The evaporation phase of pre and main injection, and subsequent combustion evolution were analyzed.
Technical Paper

Experimental and Numerical Investigation of the Idle Operating Engine Condition for a GDI Engine

2011-09-11
2011-24-0031
The paper investigates the idle operating condition of a current production turbocharged Gasoline Direct Injected (GDI) high performance engine both from an experimental and a numerical perspective. Due to the low engine speed, to the low injection pressure and to the null contribution of the turbocharger, the engine condition is far from the standard points of investigation. According to the low heat flux due to combustion, temperature levels are low and reduced fuel evaporation is expected. Consequently, fuel spray evolution within the combustion chamber and spray/wall interaction are key points for the understanding of the combustion process. In order to properly investigate and understand the many complex phenomena, a wide set of engine speeds was experimentally investigated and, as far as the understanding of the physics of spray/wall interaction is concerned, many different injection strategies are tested.
Technical Paper

Experimental and Numerical Investigation of High-Pressure Diesel Sprays with Multiple Injections at Engine Conditions

2010-04-12
2010-01-0179
A numerical methodology to simulate the high pressure spray evolution and the fuel-air mixing in diesel engines is presented. Attention is focused on the employed atomization model, a modified version of the Huh and Gosman, on the definition of a turbulence length scale limiter and of an adaptive local mesh refinement technique to minimize the result grid dependency. All the discussed models were implemented into Lib-ICE, which is a set of libraries and solvers, specifically tailored for engine simulations, which runs under the open-source CFD technology OpenFOAM®. To provide a comprehensive assessment of the proposed methodology, the validation procedure consisted into simulating, with a unique and coherent setup of all models, two different sets of experiments: a non-evaporating diesel fuel spray in a constant-volume vessel with optical access and an evaporating non-reacting diesel fuel spray in an optical engine.
Technical Paper

Fuel Injection Effect on In-cylinder Formation and Exhaust Emission of Particulate from a 4-Stroke Engine for 2-Wheel Vehicles

2010-04-12
2010-01-0354
The small engine for two-wheel vehicles has generally high possibility to be optimized at low speeds and high loads. In these conditions fuel consumption and pollutants emission should be reduced maintaining the performance levels. This optimization can be realized only improving the basic knowledge of the thermo-fluid dynamic phenomena occurring during the combustion process. It is known that, during the fuel injection phase in PFI SI engines, thin films of liquid fuel can form on the valves surface and on the cylinder walls. Successively the fuel films interact with the intake manifold and the combustion chamber gas flow. During the normal combustion process, it is possible to achieve gas temperature and mixture strength conditions that lead to fuel film ignition. This phenomenon can create diffusion-controlled flames that can persist well after the normal combustion event. These flames induce the emission of soot and unburned hydrocarbons.
Technical Paper

High Spatial Resolution Visualization and Spectroscopic Investigation of the Flame Front Propagation in the Combustion Chamber of a Scooter Engine

2010-04-12
2010-01-0351
The match between the increasing performance demands and stringent requirements of emissions and fuel consumption reduction needs a strong evolution in the 2-wheel vehicle technology. In particular many steps forward should be taken for the optimization of modern small motorcycle and scooter at low engine speeds and low temperature start. To this aim, the detailed understandings of thermal and fluid-dynamic phenomena that occur in the combustion chamber are fundamental. In this work, experimental activities were realized in the combustion chamber of a single-cylinder 4-stroke optical engine. The engine was equipped with a four-valve head of a commercial scooter engine. High spatial resolution imaging was used to follow the flame kernel growth and flame front propagation. Moreover, the effects of an abnormal combustion due to firing of fuel deposition near the intake valves and on the piston surface were investigated.
Technical Paper

Development of Fully-Automatic Parallel Algorithms for Mesh Handling in the OpenFOAM®-2.2.x Technology

2013-09-08
2013-24-0027
The current development to set up an automatic procedure for automatic mesh generation and automatic mesh motion for internal combustion engine simulation in OpenFOAM®-2.2.x is here described. In order to automatically generate high-quality meshes of cylinder geometries, some technical issues need to be addressed: 1) automatic mesh generation should be able to control anisotropy and directionality of the grid; 2) during piston and valve motion, cells and faces must be introduced and removed without varying the overall area and volume of the cells, to avoid conservation errors. In particular, interpolation between discrete fields is frequent in computational physics: the use of adaptive and non-conformal meshes necessitates the interpolation of fields between different mesh regions. Interpolation problems also arise in areas such as model coupling, model initialization and visualisation.
X