Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Optical Investigation of the Effect on the Combustion Process of Butanol-Gasoline Blend in a PFI SI Boosted Engine

2011-09-11
2011-24-0057
The addition of alcohol to conventional hydrocarbon fuels for a spark-ignition engine can increase the fuel octane rating and the power for a given engine displacement and compression ratio. In this work, the influence of butanol addition to gasoline was investigated. The experiments were performed in an optical ported fuel injection single-cylinder SI engine with an external boosting device. The engine was equipped with the head of a commercial SI turbocharged engine having the same geometrical specifications (bore, stroke and compression ratio). The effect of a blend of 20% of n-butanol and 80% of gasoline (BU20) on in-cylinder combustion process was investigated by cycle-resolved visualization. The engine worked at low speed, medium boosting and wide open throttle. Changes in spark timing and fuel injection phasing were considered. Comparisons between the flame luminosity and the combustion pressure data were performed.
Technical Paper

Spectroscopic Investigation of Post-Injection Strategy Impact on Fuel Vapor within the Exhaust Line of a Light Duty Diesel Engine Supplied with Diesel/Butanol and Gasoline Blends

2013-09-08
2013-24-0066
In this paper, a high temporal resolution optical technique, based on the multi-wavelength UV-visible-near IR extinction spectroscopy, was applied at the exhaust of an automotive diesel engine to investigate the post-injection strategy impact on the fuel vapor. Experimental investigations were carried out using three fuels: commercial diesel (B5), a blend of 80% diesel with 20% by vol. of gasoline (G20) and a blend of 80% diesel with 20% by vol. of n-butanol (BU20). Experiments were performed at the engine speed of 2500rpm and 0.8MPa of brake mean effective pressure exploring two post-injection timings and two EGR rates. The optical diagnostic allowed evaluating, during the post-injection activation, the evolution of the fuel vapor in the engine exhaust line. The investigation was focused on the impact of post-injection strategy and fuel properties on the aptitude to produce hydrocarbon rich gaseous exhaust for the regeneration of diesel particulate trap (DPF).
Technical Paper

Optical Properties Investigation of Alternative Fuels Containing Carbon-Based Nanostructures

2014-10-13
2014-01-2765
Liquids with stable suspensions of nanoscale materials are defined as nanofluids. As reported in recent scientific literature, a very small amount of suspended nanostructures has the potential to enhance the thermo physical, transport and radiative properties of the base fluid. One of the main applications of this technology is in the field of combustion and fuels. In fact, adding nanomaterials (such as metals, oxides, carbides, nitrides, or carbon-based nanostructures) to liquid fuels is able to enhance ignition and combustion. The focus of this research is to gain a fundamental understanding of the characteristics of a nanofluid fuel prepared using carbon nanoparticles (CNPs) and multi-walled carbon nanotubes (MWCNTs) dispersed in butanol. This study starts with the investigation of the optical properties of the mixtures. The transmission spectra of the nanofluids are measured in a wide wavelength range from UV (250 nm) to near IR (800 nm).
Technical Paper

The Full Cycle HD Diesel Engine Simulations Using KIVA-4 Code

2010-10-25
2010-01-2234
With the advent of the KIVA-4 code which employs an unstructured mesh to represent the engine geometry, the gap in flexibility between commercial and research modeling software becomes more narrow. In this study, we tried to perform a full cycle simulation of a 4-stroke HD diesel engine represented by a highly boosted research IF (Isotta Fraschini) engine using the KIVA-4 code. The engine mesh including the combustion chamber, intake and exhaust valves and helical manifolds was constructed using optional O-Grids catching a complex geometry of the engine parts with the help of the ANSYS ICEM CFD software. The KIVA-4 mesh input was obtained by a homemade mesh converter which can read STAR-CD and CFX outputs. The simulations were performed on a full 360 deg mesh consisting of 300,000 unstructured hexahedral cells at BDC. The physical properties of the liquid fuel were taken corresponding to those of real diesel #2 oil.
X