Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Wall Impingement Process of a Multi-Hole GDI Spray: Experimental and Numerical Investigation

2012-04-16
2012-01-1266
The Direct Injection (DI) of gasoline in Spark Ignition (SI) engines is very attractive for fuel economy and performance improvements in spark ignition engines. Gasoline direct injection (GDI) offers the possibility of multi-mode operation, homogeneous and stratified charge, with benefits respect to conventional SI engines as higher compression ratio, zero pumping losses, control of the ignition process at very lean air-fuel mixture and good cold starting. The impingement of liquid fuel on the combustion chamber wall is generally one of the major drawbacks of GDI engines because its increasing of HC emissions and effects on the combustion process; in the wall guided engines an increasing attention is focusing on the fuel film deposits evolution and their role in the soot formation. Hence, the necessity of a detailed understanding of the spray-wall impingement process and its effects on the fuel distribution. The experimental results provide a fundamental data base for CFD predictions.
Technical Paper

Experimental and Numerical Investigation of the Idle Operating Engine Condition for a GDI Engine

2012-04-16
2012-01-1144
The increased limitations to both NOx and soot emissions have pushed engine researchers to rediscover gasoline engines. Among the many technologies and strategies, gasoline direct injection plays a key-role for improving fuel economy and engine performance. The paper aims to investigate an extremely complex task such as the idle operating engine condition when the engine runs at very low engine speeds and low engine loads and during the warm-up. Due to the low injection pressure and to the null contribution of the turbocharger, the engine condition is far from the standard points of investigation. Taking into account the warm-up engine condition, the analyses are performed with a temperature of the coolant of 50°C. The paper reports part of a combined numerical and experimental synergic activity aiming at the understanding of the physics of spray/wall interaction within the combustion chamber and particular care is used for air/fuel mixing and the combustion process analyses.
X