Refine Your Search

Search Results

Viewing 1 to 12 of 12
Video

Impact of Biodiesel on Particle Emissions and DPF Regeneration Management in a Euro5 Automotive Diesel Engine

2012-06-18
Biofuel usage is increasingly expanding thanks to its significant contribution to a well-to-wheel (WTW) reduction of greenhouse gas (GHG) emissions. In addition, stringent emission standards make mandatory the use of Diesel Particulate Filter (DPF) for the particulate emissions control. The different physical properties and chemical composition of biofuels impact the overall engine behaviour. In particular, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value (LHV). More specifically, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value, respectively. The particle emissions, in fact, are lower mainly because of the higher oxygen content. Subsequently less frequent regenerations are required.
Technical Paper

Experimental Studies of an Advanced Ceramic Diesel Particulate Filter

2008-04-14
2008-01-0622
A Cummins ISB 5.9 liter medium-duty engine with cooled EGR has been used to study an early extrusion of an advanced ceramic uncatalyzed diesel particulate filter (DPF). Data for the advanced ceramic material (ACM) and an uncatalyzed cordierite filter of similar dimensions are presented. Pressure drop data as a function of mass loadings (0, 4, and 6 grams of particulate matter (PM) per liter of filter volume) for various flow rate/temperature combinations (0.115 - 0.187 kg/sec and 240 - 375 °C) based upon loads of 15, 25, 40 and 60% of full engine load (684 N-m) at 2300 rpm are presented. The data obtained from these experiments were used to calibrate the MTU 1-D 2-Layer computer model developed previously at MTU. Clean wall permeability determined from the model calibration for the ACM was 5.0e-13 m2 as compared to 3.0e-13 m2 for cordierite.
Technical Paper

A Methodology to Estimate the Mass of Particulate Matter Retained in a Catalyzed Particulate Filter as Applied to Active Regeneration and On-Board Diagnostics to Detect Filter Failures

2008-04-14
2008-01-0764
A methodology to estimate the mass of particulate retained in a catalyzed particulate filter as a function of measured total pressure drop, volumetric flow rate, exhaust temperature, exhaust gas viscosity and cake and wall permeability applicable to real-time computation is discussed. This methodology is discussed from the view point of using it to indicate when to initiate active regeneration and as an On-Board Diagnostic tool to detect filter failures. Steady-state loading characterization experiments were conducted on a catalyzed diesel particulate filter (CPF) in a Johnson Matthey CCRT® (catalyzed continuously regenerating trap) system. The experiments were performed using a 10.8 L 2002 Cummins ISM heavy-duty diesel engine. Experiments were conducted at 20, 60 and 75% of full engine load (1120 Nm) and rated speed (2100 rpm) to measure the pressure drop, transient filtration efficiency, particulate mass balance, and gaseous emissions.
Technical Paper

Impact of Biodiesel on Particle Emissions and DPF Regeneration Management in a Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0839
Biofuel usage is increasingly expanding thanks to its significant contribution to a well-to-wheel (WTW) reduction of greenhouse gas (GHG) emissions. In addition, stringent emission standards make mandatory the use of Diesel Particulate Filter (DPF) for the particulate emissions control. The different physical properties and chemical composition of biofuels impact the overall engine behaviour. In particular, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value (LHV). More specifically, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value, respectively. The particle emissions, in fact, are lower mainly because of the higher oxygen content. Subsequently less frequent regenerations are required.
Technical Paper

Effect of Diesel/RME Blend on Particle Emissions from a Diesel Engine for Quadricycle Vehicle

2014-04-01
2014-01-1602
This paper deals with the combustion characteristics and exhaust emissions of a diesel engine fuelled with conventional diesel fuel and a biodiesel blend, in particular a 20% v/v concentration of rapeseed methyl ester (RME) mixed with diesel fuel. The investigation was carried out on a prototype three-cylinder engine with 1000 cc of displacement for quadricycle applications. The engine is equipped with a direct common-rail injection system that reaches a maximum pressure of 1400 bar. The engine was designed to comply with Euro 4 and BS IV exhaust emission regulations without a diesel particulate filter. Both in-cylinder pressure and rate of heat release traces were analyzed at different engine speeds and loads. Gaseous emissions were measured at the exhaust. A smoke meter was used to measure the particulate matter concentration. The sizing and the counting of the particles were performed by means of an engine exhaust particle sizer spectrometer.
Technical Paper

How Much Regeneration Events Influence Particle Emissions of DPF-Equipped Vehicles?

2017-09-04
2017-24-0144
Diesel particulate filter (DPF) is the most effective emission control device for reducing particle emissions (both mass, PM, and number, PN) from diesel engines, however many studies reported elevated emissions of nanoparticles (<50 nm) during its regeneration. In this paper the results of an extensive literature survey is presented. During DPF active regeneration, most of the literature studies showed an increase in the number of the emitted nanoparticles of about 2-3 orders of magnitude compared to the normal operating conditions. Many factors could influence their amount, size distribution, chemical-physical nature (volatiles, semi-volatiles, solid) and the duration of the regenerative event: i.e. DPF load and thermodynamic conditions, lube and fuel sulfur content, engine operative conditions, PN sampling and measurement methodologies.
Technical Paper

An Experimental and Computational Study of the Pressure Drop and Regeneration Characteristics of a Diesel Oxidation Catalyst and a Particulate Filter

2006-04-03
2006-01-0266
An experimental and computational study was performed to evaluate the performance of the CRT™ technology with an off-highway engine with a cooled low pressure loop EGR system. The MTU-Filter 1D DPF code predicts the particulate mass evolution (deposition and oxidation) in a diesel particulate filter (DPF) during simultaneous loading and during thermal and NO2-assisted regeneration conditions. It also predicts the pressure drop across the DPF, the flow and temperature fields, the solid filtration efficiency and the particle number distribution downstream of the DPF. A DOC model was also used to predict the NO2 upstream of the DPF. The DPF model was calibrated to experimental data at temperatures from 230°C to 550°C, and volumetric flow rates from 9 to 39 actual m3/min.
Technical Paper

An Advanced 1D 2-Layer Catalyzed Diesel Particulate Filter Model to Simulate: Filtration by the Wall and Particulate Cake, Oxidation in the Wall and Particulate Cake by NO2 and O2, and Regeneration by Heat Addition

2006-04-03
2006-01-0467
A numerical model to simulate the filtration and regeneration performance of catalyzed diesel particulate filters (CPFs) was developed at Michigan Technological University (MTU). The mathematical formulation of the model and some results are described. The model is a single channel (inlet and outlet) representation of the flow while the thermal and catalytic regeneration framework is based on a 2-layer approach. The 2-layer model can simulate particulate matter (PM) oxidation by thermal and ‘catalytic’ means of oxidation with O2. Several improvements were made to this basic model and are described in this paper. A model to simulate PM oxidation by NO2/Temperature entering the particulate filter and oxidizing the PM in the two layers of the PM cake was developed. This model can be used to simulate the performance of filters with catalyst washcoats and uncatalyzed filters placed downstream of diesel oxidation catalysts (DOCs), as in the continuously regenerating traps, CRT's®.
Technical Paper

An Experimental and Modeling Study of a Diesel Oxidation Catalyst and a Catalyzed Diesel Particulate Filter Using a 1-D 2-Layer Model

2006-04-03
2006-01-0466
Modeling of diesel exhaust after-treatment devices is a valuable tool in the development and performance evaluation of these devices in a cost effective manner. Results from steady state loading experiments on a catalyzed particulate filter (CPF) in a Johnson Matthey CCRT®, performed with and without the upstream diesel oxidation catalyst (DOC) are described in this paper. The experiments were performed at 20, 40, 60 and 75% of full load (1120 Nm) at rated speed (2100 rpm) on a Cummins ISM 2002 heavy duty diesel engine. The data obtained were used to calibrate one dimensional (1-D) DOC and CPF models developed at Michigan Technological University (MTU). The 1-D 2-layer single channel CPF model helped evaluate the filtration and passive oxidation performance of the CPF. DOC modeling results of the pressure drop and gaseous emission oxidation performance using a previously developed model are also presented.
Technical Paper

The Filtration and Particulate Matter Oxidation Characteristics of a Catalyzed Wall-Flow Diesel Particulate Filter: Experimental and 1-D 2-Layer Model Results

2005-04-11
2005-01-0949
A 1-D 2-layer model developed previously at MTU was used in this research to predict the pressure drop, filtration characteristics and various properties of the particulate filter and the particulate deposit layer. The model was calibrated and validated for this CPF with data obtained from steady state experiments conducted using a 1995 Cummins M11-330E heavy-duty diesel engine with manual EGR and using ULSF. The CPF used is a NGK filter having a cordierite substrate with NEX catalyst type formulation (54% porosity, 15.0 μm mean pore diameter and 50 gms/ft3 Pt). The filter was catalyzed using a wash coat process. The model was used to predict the pressure drop, particulate mass retained inside the CPF, particulate mass filtration efficiency and concentration downstream of the CPF with agreement between the experimental and simulated data.
Technical Paper

A One-Dimensional Computational Model for Studying the Filtration and Regeneration Characteristics of a Catalyzed Wall-Flow Diesel Particulate Filter

2003-03-03
2003-01-0841
A one-dimensional, two layer computational model was developed to predict the behavior of a clean and particulate-loaded catalyzed wall-flow diesel particulate filter (CPF). The model included the mechanisms of particle deposition inside the CPF porous wall and on the CPF wall surface, the exhaust flow field and temperature field inside the CPF, as well as the particulate catalytic oxidation mechanisms accounting for the catalyst-assisted particulate oxidation by the catalytic coating in addition to the conventional particulate thermal oxidation. The paper also develops the methodology for calibrating and validating the model with experimental data. Steady state loading experiments were performed to calibrate and validate the model.
Journal Article

Analysis of Particle Mass and Size Emissions from a Catalyzed Diesel Particulate Filter during Regeneration by Means of Actual Injection Strategies in Light Duty Engines

2011-09-11
2011-24-0210
The diesel particulate filters (DPF) are considered the most robust technologies for particle emission reduction both in terms of mass and number. On the other hand, the increase of the backpressure in the exhaust system due to the accumulation of the particles in the filter walls leads to an increase of the engine fuel consumption and engine power reduction. To limit the filter loading, and the backpressure, a periodical regeneration is needed. Because of the growing interest about particle emission both in terms of mass, number and size, it appears important to monitor the evolution of the particle mass and number concentrations and size distribution during the regeneration of the DPFs. For this matter, in the presented work the regeneration of a catalyzed filter was fully analyzed. Particular attention was dedicated to the dynamic evolution both of the thermodynamic parameters and particle emissions.
X