Refine Your Search




Search Results


Impact of Biodiesel on Particle Emissions and DPF Regeneration Management in a Euro5 Automotive Diesel Engine

Biofuel usage is increasingly expanding thanks to its significant contribution to a well-to-wheel (WTW) reduction of greenhouse gas (GHG) emissions. In addition, stringent emission standards make mandatory the use of Diesel Particulate Filter (DPF) for the particulate emissions control. The different physical properties and chemical composition of biofuels impact the overall engine behaviour. In particular, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value (LHV). More specifically, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value, respectively. The particle emissions, in fact, are lower mainly because of the higher oxygen content. Subsequently less frequent regenerations are required.

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO2 oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.
Technical Paper

Two Dimensional Analysis of Diesel Combustion by Spectral Flame Emissivity Measurements

Spectral flame emissivity and absorption measurements with high temporal and spatial resolution were performed in an optically accessible high-swirl divided-chamber Diesel system. Simultaneous determination of soot temperature, soot volume fraction and the OH radical concentration were made from the start to the end of the combustion in 153 locations equally distributed in the chamber. The engine was run at 2000 rpm and at fixed air-fuel ratio realizing 200 consecutive combustion cycles. To visualize the spatial and temporal spray and flame evolution, direct high-speed photographic sequences were taken at 8000 frames/s. The photographic sequences showed that the spray is strongly distorted and mixed by very high swirl resulting in a well premixed region where the combustion starts. The OH radicals were detected in the fuel reaction zone. Moreover OH concentration and soot volume fraction are well correlated with soot temperature.
Technical Paper

A 2-D Computational Model Describing the Flow and Filtration Characteristics of a Ceramic Diesel Particulate Trap

A 2-D computational model was developed to describe the flow and filtration processes, in a honeycomb structured ceramic diesel particulate trap. This model describes the steady state trap loading, as well as the transient behavior of the flow and filtration processes. The theoretical model includes the effect of a copper fuel additive on trap loading and transient operation. The convective terms were based on a 2-D analytical flow field solution derived from the conservation of mass and momentum equations. The filtration theory incorporated in the time dependent numerical code included the diffusion, inertia, and direct interception mechanisms. Based on a measured upstream particle size distribution, using the filtration theory, the downstream particle size distribution was calculated. The theoretical filtration efficiency, based on particle size distribution, agreed very well (within 1%) with experimental data for a number of different cases.
Technical Paper

A 2-D Computational Model Describing the Heat Transfer, Reaction Kinetics and Regeneration Characteristics of a Ceramic Diesel Particulate Trap

A 2-D CFD model was developed to describe the heat transfer, and reaction kinetics in a honeycomb structured ceramic diesel particulate trap. This model describes the steady state as well as the transient behavior of the flow and heat transfer during the trap regeneration processes. The trap temperature profile was determined by numerically solving the 2-D unsteady energy equation including the convective, heat conduction and viscous dissipation terms. The convective terms were based on a 2-D analytical flow field solution derived from the conservation of mass and momentum equations (Opris, 1997). The reaction kinetics were described using a discretized first order Arrhenius function. The 2-D term describing the reaction kinetics and particulate matter conservation of mass was added to the energy equation as a source term in order to represent the particulate matter oxidation. The filtration model describes the particulate matter accumulation in the trap.
Technical Paper

An Assessment of Predictivity of CFD Computations of Combustion and Pollutants Formation in D.I. Diesel Engines

In the present paper the status of development of diesel combustion and pollutants formation modelling at Diesel Engines and Fuels Research Division of Istituto Motori is pointed out. The main features and performances of the model are discussed comparing the numerical results with some experimental data. For the experiments a single cylinder direct injection diesel engine was used. In the head of the engine two small quartz windows have been mounted, in order to obtain pictures of the injection and combustion processes by high speed cinematography, and to apply the two colour technique for soot temperature and soot loading measurements. The soot loading was measured by the two colour technique and the a priori and the experimental uncertainties of the measurement technique were carefully evaluated. In addition, the engine may be also equipped with a second head, in which a fast acting valve allows the direct sampling of the combustion products.
Technical Paper

The Effect of a Ceramic Particulate Trap on the Particulate and Vapor Phase Emissions of a Heavy-Duty Diesel Engine

Exhaust emissions were characterized from a Cummins LTA10 heavy-duty diesel engine operated at two EPA steady-state modes with and without an uncatalyzed Corning ceramic particulate trap. The regulated emissions of nitrogen oxides (NOx), hydrocarbons (HC), and total particulate matter (TPM) and its components as well as the unregulated emissions of PAH, nitro-PAH, mutagenic activity and particle size distributions were measured. The consistently significant effects of the trap on regulated emissions included reductions of TPM and TPM-associated components. There were no changes in NOx and HC were reduced only at one operating condition. Particle size distribution measurements showed that nuclei-mode particles were formed downstream of the trap, which effectively removed accumulation-mode particles. All of the mutagenicity was direct-acting and the mutagenic activity of the XOC was approximately equivalent to that of the SOF without the trap.
Technical Paper

The Effects of Fuel Sulfur Concentration on Regulated and Unregulated Heavy-Duty Diesel Emissions

The effects of fuel sulfur concentration on heavy-duty diesel emissions have been studied at two EPA steady-state operating conditions, mode 9 (1900 RPM, 75% Load) and mode 11(1900 RPM, 25% Load). Data were obtained using one fuel at two sulfur levels (Low Sulfur, LS = 0.01 wt% S and Doped Low Sulfur DS = 0.29 wt% S). All tests were conducted using a Cummins LTA10-300 heavy-duty diesel engine. No significant changes were found for the nitrogen oxides (NOx), soluble organic fractions (SOF) and XAD-2 (a copolymer of styrene and divinylbenzene) organic component (XOC) due to the fuel sulfur level increase at either engine mode. The hydrocarbon (HC) levels were not significantly affected by sulfur at mode 9; however, at mode 11 the HC levels were reduced by 16%. The total particulate matter (TPM) levels increased by 17% at mode 11 and by 24% at mode 9 (both significantly different).
Technical Paper

The Influence of Fuel Composition on Particulate Emissions of DI Diesel Engines

The effect of different fuel parameters on emissions is difficult to understand, the response depending upon different engine technologies. In addition the isolation of some of the fuel variables is often very hard. The present paper discusses the main results obtained testing a matrix of 14 fuels designed for obtain large variations of cetane number, sulphur and aromatic contents of Diesel oil. The aromatic structure of fuels and its effect on particulate emissions was also investigated. A linear regression analysis was performed in order to isolate the main controlling factors on particulate emissions. Finally the influence of aromatic contents of fuel on unregulated emissions was also assessed.
Technical Paper

Soot Formation and Oxidation in a DI Diesel Engine: A Comparison Between Measurements and Three Dimensional Computations

Three dimensional computations of Diesel combustion were performed using a modified version of Kiva II code. The autoignition and combustion model were tuned on a set of experimental conditions, changing the engine design, the operating conditions and the fuel characteristics. The sensitivity of the model to the different test cases is acceptable and the experimental trends are well reproduced. In addition the peak of pressure and temperature computed by the code are quite close to the experimental values, as well as the pressure derivatives. Once tuned the combustion model constants, different but simple formulations for the soot formation and oxidation processes were implemented in the code and compared with the experimental measurements obtained both with fast sampling technique and two colors method. These formulations were found unable to give good prediction in a large range of engine operating conditions, even if the model tuning may be very good for each test point.
Technical Paper

A Turbocharged Spark Ignition Engine with Low Exhaust Emissions and Improved Fuel Economy

Turbocharging, in addition to increasing an engine's power output, can be effectively used to maintain exhaust emission levels while improving fuel economy. This paper presents the emission and performance results obtained from a turbocharged multicylinder spark ignition engine with thermal reactors and exhaust gas recirculation (EGR) operated at steady-state, part-load conditions for four engine speeds. When comparing a turbocharged engine to a larger displacement naturally aspirated engine of equal power output, the emissions expressed in grams per mile were relatively unchanged both with and without EGR. However, turbocharging provided an average of 20% improvement in fuel economy both with and without EGR. When comparing the turbocharged and nonturbocharged versions of the same engine without EGR at a given load and speed, turbocharging increased the hydrocarbon (HC) and carbon monoxide (CO) emissions and decreased oxides of nitrogen (NOx) emissions.
Technical Paper

Experimental Characterization of an Ethanol DI - Gasoline PFI and Gasoline DI - Gasoline PFI Dual Fuel Small Displacement SI Engine

The aim of the paper is the comparison of the performance, gaseous and particle emissions from different injection configurations and fuels. The engine was operated in port fuel injection (PFI), direct injection (DI) and dual fuel (DF). For DF, ethanol DI-gasoline PFI and gasoline DI-gasoline PFI strategies were performed to discern the effect of injection strategy from the effect of the fuel. The experimental activity was carried out in a small displacement single cylinder engine, representative of 2-3 wheel vehicle engines or of 3-4 cylinder small displacement automotive engines. It was equipped with a prototype gasoline direct injection (GDI) head. The tests were carried out at 3000 rpm, 4000 rpm and 5000 rpm full load. The investigated engine operating conditions are representative of the homologation urban driving cycle. The gaseous and particle emissions were measured at the exhaust by means of a gas analyzer and a smoke meter.
Technical Paper

The Effects of a Porous Ceramic Particulate Trap on the Physical, Chemical and Biological Character of Diesel Particulate Emissions

Physical, chemical, and biological characterization data for the particulate emissions from a Caterpillar 3208 diesel engine with and without Corning porous ceramic particulate traps are presented. Measurements made at EPA modes 3,4,5,9,lO and 11 include total hydrocarbon, oxides of nitrogen and total particulate matter emissions including the solid fraction (SOL), soluble organic fraction (SOF) and sulfate fraction (SO4), Chemical character was defined by fractionation of the SOF while biological character was defined by analysis of Ames Salmonella/ microsome bioassay data. The trap produced a wide range of total particulate reduction efficiencies (0-97%) depending on the character of the particulate. The chemical character of the SOF was significantly changed through the trap as was the biological character. The mutagenic specific activity of the SOF was generally increased through the trap but this was offset by a decrease in SOF mass emissions.
Technical Paper

A Model and the Methodology for Determining Wear Particle Generation Rate and Filter Efficiency in a Diesel Engine Using Ferrography

Monitoring of the wear rate of a diesel engine will yield valuable information regarding the wear mechanism within a diesel engine and ultimately will improve the predictions of failing engines and/or their components to allow preventive maintenance which will prolong the life of the engine. A mathematical model was developed that describes the wear particle concentration as a function of time in a diesel engine. This model contains engine and lubrication system parameters that determine the concentration of wear particles in the engine sump. These variables are the oil system volume, oil flow rate, particle generation rate, filtering efficiency and the initial particle concentration. The model has been employed to study the wear particle concentrations in the sump and the mass of particles in the filter for the Cummins VT-903 diesel engine.
Technical Paper

Combustion Process Investigation in a Small SI Engine using Optical Diagnostics

Nowadays an elevated number of two, three and four wheels vehicles circulating in the world-wide urban areas is equipped with Port Fuel Injection Spark Ignition (PFI SI) engines. Their technological level is high, but a further optimization is still possible, especially at low engine speed and high load. To this purpose, the scientific community is now focused on deepening the understanding of thermo fluid dynamic phenomena that takes place in this kind of engine: the final purpose is to find key points for the reduction in engine specific fuel consumption and exhaust emissions without a decrease in performance. In this work, the combustion process was investigated in an optically accessible single cylinder PFI SI engine. It was equipped with the head, injection device and exhaust line of a commercial small engine for two-wheel vehicles, it had the same geometrical characteristics in terms of bore, stroke and compression ratio.
Technical Paper

Idle Speed Control of GDI-SI Engines via ECU-1D Engine Co-Simulation

Idle Speed Control plays a crucial role to reduce fuel consumption that turns in both a direct economic benefit for customers and CO\d reduction particularly important to tackle the progressive global environmental warming. Typically, control strategies available in the automotive literature solve the idle speed control problem acting both on the throttle position and the spark advance, while the Air-Fuel Ratio (AFR), that strongly affects the indicated engine torque, is kept at the stoichiometric value for the sake of emission reduction. Gasoline Direct Injection (GDI) engines, working lean and equipped with proper mechanisms to reduce NOx emissions, overcome this limitation allowing the AFR to be used for the idle speed regulation.
Technical Paper

Combustion Analysis in an Optical Diesel Engine Operating with Low Compression Ratio and Biodiesel Fuels

In this paper we report how optical techniques were applied in the cylinder of an optically accessible engine equipped with latest-generation EURO V diesel engine head. The injection strategy with high percentage of EGR, characteristic of real engine operating point, was adopted. In particular, the combustion behavior at 1500 rpm\2 bar BMEP was investigated. Alternative diesel fuels were used. In particular, rapeseed methyl ester (RME) and gas to liquid (GTL) were selected as representative of 1st and 2nd generation alternative diesel fuel, respectively. Combustion analysis was carried out in the engine combustion chamber by means of visible digital imaging. These measurements helped to analyze the chemical and physical events occurring during the mixture preparation and the combustion development. Ultraviolet (UV) digital imaging was also performed and the presence of characteristic radical, like OH, in the various phases of combustion was detected as well.
Technical Paper

Experimental Study Comparing Particle Size and Mass Concentration Data for a Cracked and Un-Cracked Diesel Particulate Filter

Steady state loading characterization experiments were conducted at three different engine load conditions and rated speed on the cracked catalyzed particulate filter (CPF). The experiments were performed using a 10.8 L 2002 Cummins ISM-330 heavy duty diesel engine. The CPF underwent a ring off failure, commonly seen in particulate filters, due to high radial and axial temperature gradients. The filters were cracked during baking in an oven which was done to regenerate PM collected after every loading characterization experiment. Two different configurations i.e. with and without a diesel oxidation catalyst (DOC) upstream of the CPF were studied. The data were compared with that on an un-cracked CPF at similar engine conditions and configurations. Pressure drop, transient filtration efficiency by particle size and PM mass and gaseous emissions measurements were made during each experiment.
Technical Paper

Fuel Injection Effect on In-cylinder Formation and Exhaust Emission of Particulate from a 4-Stroke Engine for 2-Wheel Vehicles

The small engine for two-wheel vehicles has generally high possibility to be optimized at low speeds and high loads. In these conditions fuel consumption and pollutants emission should be reduced maintaining the performance levels. This optimization can be realized only improving the basic knowledge of the thermo-fluid dynamic phenomena occurring during the combustion process. It is known that, during the fuel injection phase in PFI SI engines, thin films of liquid fuel can form on the valves surface and on the cylinder walls. Successively the fuel films interact with the intake manifold and the combustion chamber gas flow. During the normal combustion process, it is possible to achieve gas temperature and mixture strength conditions that lead to fuel film ignition. This phenomenon can create diffusion-controlled flames that can persist well after the normal combustion event. These flames induce the emission of soot and unburned hydrocarbons.
Technical Paper

Effects of Low Temperature Premixed Combustion (LTPC) on Emissions of a Modern Diesel Engine for Passenger Cars

In this paper, a Low Temperature Premixed Combustion (LTPC) was investigated employing a four cylinder D.I. common rail Diesel engine, used for passenger cars on the European market. Experiments were carried out setting the engine speed at 2500 rpm with a fuel amount of 26 mg/str to realize an operating condition close to the point of NEDC at 0.8 MPa of BMEP. The experimental approach was the management of the start of injection, injection pressure and EGR rates as a method to control NOx and soot production. The investigation was first carried out testing engine performances and emissions as set from the commercial engine map. Afterward, engine tests were carried out exploring performances, gaseous and smoke emissions at late start of combustion [10 to 17.5 cad ATDC], injection pressures from 80 to 120 MPa and EGR rates up to 50%.