Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-06-18
A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO2 oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.
Technical Paper

Effect of Hydrogen Enrichment on Flame Morphology and Combustion Evolution in a SI Engine Under Lean Burn Conditions

2018-04-03
2018-01-1144
Uncertainty of fuel supply in the energy sector and environmental protection concerns have motivated studies on clean and renewable alternative fuels for vehicles as well as stationary applications. Among all fuel candidates, hydrogen is generally believed to be a promising alternative, with significant potential for a wide range of operating conditions. In this study, a comparison was carried out between CH4, two CH4/H2 blends and two mixtures of CO and H2, the last one taken as a reference composition representative of syngas. It is imperative to fully understand and characterize how these fuels behave in various conditions. In particular, a deep knowledge of how hydrogen concentrations affect the combustion process is necessary, given that it represents a fundamental issue for the optimization of internal combustion engines. To this aim, flame morphology and combustion stability were studied in a SI engine under lean burn conditions.
Technical Paper

Assessment of Closed-Loop Combustion Control Capability for Biodiesel Blending Detection and Combustion Impact Mitigation for an Euro5 Automotive Diesel Engine

2011-04-12
2011-01-1193
The present paper describes the results of a cooperative research project between GM Powertrain Europe and Istituto Motori - CNR aimed at studying the impact of both fresh and highly oxidized Rapeseed Methyl Ester (RME) at different levels of blending on performance, emissions and fuel consumption of modern automotive diesel engines featuring Closed-Loop Combustion Control (CLCC). In parallel, the capability of this system to detect the level of biodiesel blending through the use of specific detection algorithms was assessed. The tests were performed on the recently released 2.0L Euro5 GM diesel engine for passenger car application equipped with embedded pressure sensors in the glow plugs. Various blends of fresh and aged RME with reference diesel fuel were tested, notably 20% RME by volume (B20), 50% (B50) and pure RME (B100).
Technical Paper

Combustion Analysis in an Optical Diesel Engine Operating with Low Compression Ratio and Biodiesel Fuels

2010-04-12
2010-01-0865
In this paper we report how optical techniques were applied in the cylinder of an optically accessible engine equipped with latest-generation EURO V diesel engine head. The injection strategy with high percentage of EGR, characteristic of real engine operating point, was adopted. In particular, the combustion behavior at 1500 rpm\2 bar BMEP was investigated. Alternative diesel fuels were used. In particular, rapeseed methyl ester (RME) and gas to liquid (GTL) were selected as representative of 1st and 2nd generation alternative diesel fuel, respectively. Combustion analysis was carried out in the engine combustion chamber by means of visible digital imaging. These measurements helped to analyze the chemical and physical events occurring during the mixture preparation and the combustion development. Ultraviolet (UV) digital imaging was also performed and the presence of characteristic radical, like OH, in the various phases of combustion was detected as well.
Technical Paper

Spatial-Temporal Characterization of Alternative Fuel Sprays from a Second-Generation Common-Rail Fuel Injection System for Euro4 Passenger Car Application

2009-06-15
2009-01-1856
GM Powertrain Europe and Istituto Motori CNR have undergone a research project aimed at studying the effects on engine performance, emissions and fuel consumption of alternative diesel fuels, from both first (FAME) and second (GTL) generation. The present paper reports some of the results achieved studying the impact on injection and spray behavior of rapeseed and soybean methyl-esters, as well as of GTL diesel blends. The test were performed on a Bosch second generation common rail solenoid-driven fuel injection system capable of 1600bar maximum injection pressure, fitted on GM 1.9L Euro4 diesel engine for passenger cars. The characterization of the injection process has been carried out in terms both of fuel injection rate, as well as of spatial and temporal fuel distribution in a quiescent non-evaporative optically accessible chamber.
Technical Paper

An Experimental Investigation into Particulate Matter Oxidation in a Catalyzed Particulate Filter with Biodiesel Blends on an Engine during Active Regeneration

2013-04-08
2013-01-0521
Active regeneration experiments were carried out on a production 2007 Cummins 8.9L ISL engine and associated diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF) aftertreatment system. The effects of SME biodiesel blends were investigated to determine the particulate matter (PM) oxidation reaction rates for active regeneration. The experimental data from this study will also be used to calibrate the MTU-1D CPF model [1]. The experiments covered a range of CPF inlet temperatures using ULSD, B10, and B20 blends of biodiesel. The majority of the tests were performed at a CPF PM loading of 2.2 g/L with in-cylinder dosing, although 4.1 g/L and a post-turbo dosing injector were also investigated. The PM reaction rate was shown to increase with increasing percent biodiesel in the test fuel as well as increasing CPF temperature.
Technical Paper

Study of E10 and E85 Effect on Air Fuel Mixing and Combustion Process in Optical Multicylinder GDI Engine and in a Spray Imaging Chamber

2013-04-08
2013-01-0249
The aim of the present work is the study of the combustion process in Gasoline Direct Injection (GDI) engine fuelled with ethanol mixed with gasoline at percentages of 10 and 85. The characterization has been made in terms of performance and emission for different injection pressure conditions and the results correlated to the unperturbed non-evaporating evolution of the fuel injected in a pressurized quiescent vessel. Measurements were performed in the optically accessible combustion chamber made by modifying a real 4-stroke, 4-cylinder, high performance GDI engine. The cylinder head was instrumented by using an endoscopic system coupled to high spatial and temporal resolution camera in order to allow the visualization of the fuel injection and the combustion process. The engine is equipped with solenoid-actuated six-hole GDI injectors, 0.14 mm hole diameter, 9.0 g/s @ 10 MPa static flow.
Technical Paper

Blend Ratio Optimization of Fuels Containing Gasoline Blendstock, Ethanol, and Higher Alcohols (C3-C6): Part II - Blend Properties and Target Value Sensitivity

2013-04-08
2013-01-1126
Higher carbon number alcohols offer an opportunity to meet the Renewable Fuel Standard (RFS2) and improve the energy content, petroleum displacement, and/or knock resistance of gasoline-alcohol blends from traditional ethanol blends such as E10 while maintaining desired and regulated fuel properties. Part II of this paper builds upon the alcohol selection, fuel implementation scenarios, criteria target values, and property prediction methodologies detailed in Part I. For each scenario, optimization schemes include maximizing energy content, knock resistance, or petroleum displacement. Optimum blend composition is very sensitive to energy content, knock resistance, vapor pressure, and oxygen content criteria target values. Iso-propanol is favored in both scenarios' suitable blends because of its high RON value.
Technical Paper

Optical Investigation of Post-injection Strategy Impact on the Fuel Vapor within the Exhaust Line of a Light Duty Diesel Engine Supplied with Biodiesel Blends

2013-04-08
2013-01-1127
Multi-wavelength ultraviolet-visible extinction spectroscopy was applied to follow the evolution of fuel vapor injected by post-injection along the exhaust line of a common-rail turbocharged direct-injection diesel engine at moderate speed and load. The exhaust line was specifically designed and customized to allow the insertion of the optical access upstream of the Diesel Oxidation Catalyst. During the experimental campaign, the engine was fuelled with commercial B5 fuel and a B30 v/v blend of RME and ultra low sulfur diesel, monitoring emissions upstream of the catalyst and exhaust gas temperature across the catalyst. Tests were performed at different engine operating conditions with particular attention to moderate speed and load.
Technical Paper

Blend Ratio Optimization of Fuels Containing Gasoline Blendstock, Ethanol, and Higher Alcohols (C3-C6): Part I - Methodology and Scenario Definition

2013-04-08
2013-01-1144
The U.S. Renewable Fuel Standard (RFS2) requires an increase in the use of advanced biofuels up to 36 billion gallons by 2022. Longer chain alcohols, in addition to cellulosic ethanol and synthetic biofuels, could be used to meet this demand while adhering to the RFS2 corn-based ethanol limitation. Higher carbon number alcohols can be utilized to improve the energy content, knock resistance, and/or petroleum displacement of gasoline-alcohol blends compared to traditional ethanol blends such as E10 while maintaining desired and regulated fuel properties. Part I of this paper focuses on the development of scenarios by which to compare higher alcohol fuel blends to traditional ethanol blends. It also details the implementation of fuel property prediction methods adapted from literature. Possible combinations of eight alcohols mixed with a gasoline blendstock were calculated and the properties of the theoretical fuel blends were predicted.
Technical Paper

Statistical Investigation of In Use Emissions and Fuel Consumption Measured by PEM on Different Gasoline Cars

2013-04-08
2013-01-1511
In this paper some results relative to tests performed on road with a Fiat Panda Bipower, (CNG and gasoline powered), and a New Panda Twin Air with auto Start & Stop system, are presented. Gaseous emissions are measured with Portable Emission Measurement Systems (PEMS) on two different urban routes, in terms of traffic and slope characteristics during in use experiments. PEMS testing offers an easy and efficient way to evaluate the vehicle emissions over a huge variety of conditions and provides us a direct way to study the in-use emissions of combustion engines, when you want to verify the effect of the traffic and of a particular device on fuel economy and emissions reduction. Moreover now PEMS performances are very comparable to those obtained by standard laboratory instrumentation systems.
Technical Paper

Use of Renewable Oxygenated Fuels in Order to Reduce Particle Emissions from a GDI High Performance Engine

2011-04-12
2011-01-0628
The use of oxygenated and renewable fuels is nowadays a widespread means to reduce regulated pollutant emissions produced by internal combustion engines, as well as to reduce the greenhouse impact of transportation. Besides PM, NOx and HC emissions, also the size distribution of particles emitted at the engine exhaust represent meaningful information, considering its adverse effects on the environment and human health. In this work, the results of a comprehensive investigation on the combustion characteristics and the exhaust emissions of a GDI high performance engine, fuelled with pure bio-ethanol and European gasoline, are shown. The engine is a 4-cylinder, 4-stroke, 1750 cm₃ displacement, and turbocharged. The engine was operated at different speed/load conditions and two fuel injection strategies were investigated: homogeneous charge mode and stratified charge mode.
Technical Paper

Optimization of Control Parameters for a Heavy-Duty CNG Engine via Co-Simulation Analysis

2011-04-12
2011-01-0704
Internal combustion engines for vehicle propulsion are more and more sophisticated due to increasingly restrictive environmental regulations. In case of heavy-duty engines, Compressed Natural Gas (CNG) fueling coupled with Three-Way Catalyst (TWC) and Exhaust Gas Recirculation (EGR) can help in meeting the imposed emission limits and preventing from thermal stress of engine components. To cope with the new issues associated with the more complex hardware and to improve powertrain performance and reliability and after-treatment efficiency, the engine control strategies must be reformulated. The paper focuses on the steady-state optimization of control parameters for a heavy-duty engine fueled by CNG and equipped with turbocharger and EGR. The optimization analysis is carried out to design EGR, spark timing and wastegate control, aimed at increasing fuel economy while reducing in-cylinder temperature to prevent from thermal stress of engine components.
Technical Paper

Influence of Water Injection on Performance and Emissions of a Direct-Injection Hydrogen Research Engine

2008-10-06
2008-01-2377
The application of hydrogen (H2) as an internal combustion (IC) engine fuel has been under investigation for several decades. The favorable physical properties of hydrogen make it an excellent alternative fuel for IC engines and hence it is widely regarded as the energy carrier of the future. Direct injection of hydrogen allows optimizing this potential as it provides multiple degrees of freedom to influence the in-cylinder combustion processes and consequently engine efficiency and exhaust emissions. At certain operating conditions the stratification associated with hydrogen direct injection (DI) leads to an efficiency improvement. However, it also results in higher emissions levels. This paper examines the effects of combining an advanced direct injection strategy with water injection for efficiency benefits and emissions reduction of a hydrogen fuelled DI spark ignition (SI) engine.
Technical Paper

Evaluation of Injector Location and Nozzle Design in a Direct-Injection Hydrogen Research Engine

2008-06-23
2008-01-1785
The favorable physical properties of hydrogen (H2) make it an excellent alternative fuel for internal combustion (IC) engines and hence it is widely regarded as the energy carrier of the future. Hydrogen direct injection provides multiple degrees of freedom for engine optimization and influencing the in-cylinder combustion processes. This paper compares the results in the mixture formation and combustion behavior of a hydrogen direct-injected single-cylinder research engine using two different injector locations as well as various injector nozzle designs. For this study the research engine was equipped with a specially designed cylinder head that allows accommodating a hydrogen injector in a side location between the intake valves as well as in the center location adjacent to the spark plug.
Technical Paper

Effect of Natural Gas/Hydrogen Blends on Spark Ignition Stoichiometric Engine Efficiency

2011-09-11
2011-24-0121
Hydrogen (H₂) added to natural gas (NG), improves the combustion process of the air-fuel mixture. This gives the potentiality to develop engines with better performance and lower environmental impact. In any case how hydrogen is produced represents a crucial aspect. In general, if H₂ is produced utilizing fossil fuels and not renewable or nuclear sources, the environmental benefit of CO₂ reduction could be reduced. In this paper two engines, a light-duty (LD) and a heavy-duty (HD), were tested in stoichiometric conditions. The engines were fuelled with NG and with two blends of NG with a 20% and a 40% by volume of H₂, respectively named NG/H₂ 20% and NG/H₂ 40%. The light-duty engine was tested at different loads and speeds, with spark advance set by the electronic control unit (ECU). The ECU actuated a retarded ignition, especially at low load. With the heavy-duty engine, the tests were carried out only at high load.
Technical Paper

Particle Size Distributions from a DI High Performance SI Engine Fuelled with Gasoline-Ethanol Blended Fuels

2011-09-11
2011-24-0211
This paper reports the results of an experimental investigation on the combustion characteristics and exhaust particulate emissions of a GDI high performance engine, fuelled with blends of bio-ethanol and European gasoline fuel. The engine is a 4-cylinder, 4-stroke, 1750 cm₃ displacement, and turbocharged. The engine was operated at fixed speed and load, namely 1500 rpm and 110 Nm, and fuelled with gasoline (E0), ethanol (E100) and two blends 50% v/v (E50) and 85% v/v (E85) of ethanol in gasoline. Two fuel injection strategies were investigated: homogeneous charge and stratified charge combustion mode. The study mainly focuses on the effects of fuel injection strategy and ethanol upon the emissions of particulate matter (PM), in terms of mass, number concentration and size distribution.
Technical Paper

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-04-16
2012-01-0837
A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO₂ oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.
Technical Paper

Impact of Biodiesel on Particle Emissions and DPF Regeneration Management in a Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0839
Biofuel usage is increasingly expanding thanks to its significant contribution to a well-to-wheel (WTW) reduction of greenhouse gas (GHG) emissions. In addition, stringent emission standards make mandatory the use of Diesel Particulate Filter (DPF) for the particulate emissions control. The different physical properties and chemical composition of biofuels impact the overall engine behaviour. In particular, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value (LHV). More specifically, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value, respectively. The particle emissions, in fact, are lower mainly because of the higher oxygen content. Subsequently less frequent regenerations are required.
Technical Paper

Low Cetane Number Renewable Oxy-fuels for Premixed Combustion Concept Application: Experimental Investigation on a Light Duty Diesel Engine

2012-04-16
2012-01-1310
This paper illustrates the results of an experimental study on the impact of a low cetane number (CN) oxygenated fuel on the combustion process and emissions of a light-duty (LD) single-cylinder research engine. In an earlier study, it was concluded that cyclic oxygenates consistently outperformed their straight and branched counterparts at equal oxygen content and with respect to lowering soot emissions. A clear correlation was reported linking soot and CN, with lower CN fuels leading to more favorable soot levels. It was concluded that a lower CN fuel, when realized by adding low reactive cyclic oxygenates to commercial diesel fuel, manifests in longer ignition delays and thus more premixing. Ultimately, a higher degree of premixing, in turn, was thought to suppress soot formation rates.
X