Refine Your Search

Topic

Author

Search Results

Technical Paper

A Study of the Vapor- and Particle-Phase Sulfur Species in the Heavy-Duty Diesel Engine EGR Cooler

1998-05-04
981423
To meet future NO, heavy-duty diesel emissions standards, exhaust gas recirculation (EGR) technology is likely to be used. To improve fuel economy and further lower emissions, the recirculated exhaust gas needs to be cooled, with the possibility that cooling of the exhaust gas may form sulfuric acid condensate in the EGR cooler. This corrosive condensate can cause EGR cooler failure and consequentially result in severe damage to the engine. Both a literature review and a preliminary experimental study were conducted. In this study, a manually controlled EGR system was installed on a 1995 Cummins Ml l-330E engine which was operated at EPA mode 9* (1800 rpm and 75% load). The Goksoyr-Ross method (1)** was used to measure the particle-phase sulfate and vapor-phase H2SO4 and SO2 at the inlet and outlet locations of the EGR cooler, obtaining H2SO4 and SO2 concentrations. About 0.5% of fuel sulfur in the EGR cooler was in the particle-phase.
Technical Paper

A Turbocharged Spark Ignition Engine with Low Exhaust Emissions and Improved Fuel Economy

1973-02-01
730633
Turbocharging, in addition to increasing an engine's power output, can be effectively used to maintain exhaust emission levels while improving fuel economy. This paper presents the emission and performance results obtained from a turbocharged multicylinder spark ignition engine with thermal reactors and exhaust gas recirculation (EGR) operated at steady-state, part-load conditions for four engine speeds. When comparing a turbocharged engine to a larger displacement naturally aspirated engine of equal power output, the emissions expressed in grams per mile were relatively unchanged both with and without EGR. However, turbocharging provided an average of 20% improvement in fuel economy both with and without EGR. When comparing the turbocharged and nonturbocharged versions of the same engine without EGR at a given load and speed, turbocharging increased the hydrocarbon (HC) and carbon monoxide (CO) emissions and decreased oxides of nitrogen (NOx) emissions.
Technical Paper

Nonlinear Model Predictive Control of a Power-Split Hybrid Electric Vehicle with Electrochemical Battery Model

2017-03-28
2017-01-1252
This paper studies the nonlinear model predictive control for a power-split Hybrid Electric Vehicle (HEV) power management system to improve the fuel economy. In this paper, a physics-based battery model is built and integrated with a base HEV model from Autonomie®, a powertrain and vehicle model architecture and development software from Argonne National Laboratory. The original equivalent circuit battery model from the software has been replaced by a single particle electrochemical lithium ion battery model. A predictive model that predicts the driver’s power request, the battery state of charge (SOC) and the engine fuel consumption is studied and used for the nonlinear model predictive controller (NMPC). A dedicated NMPC algorithm and its solver are developed and validated with the integrated HEV model. The performance of the NMPC algorithm is compared with that of a rule-based controller.
Technical Paper

Effect of State of Charge Constraints on Fuel Economy and Battery Aging when Using the Equivalent Consumption Minimization Strategy

2018-04-03
2018-01-1002
Battery State of Charge (SOC) constraints are used to prevent the battery in Hybrid Electric Vehicles (HEVs) from over-charging or over-discharging. These constraints strongly influence the power-split of the HEV. This paper presents results on how Battery State of Charge (SOC) constraints effects Lithium ion battery aging and fuel economy when using the Equivalent Consumption Minimization Strategy (ECMS). The vehicle studied is the Honda Civic Hybrid. The battery used is A123 Systems’ ANR26650 battery cell. Vehicle simulation uses multiple combinations of highway and city drive cycles. For each combination of drive cycles, nine SOC constraints ranges are used. Battery aging is evaluated using a semi-empirical model combined with the accumulated Ah-throughput method which uses, as an input, the battery SOC trajectory from the vehicle simulations. The simulation results provide insight into how SOC constraints effect fuel economy as well as battery aging.
Technical Paper

The Design and Testing of a Computer-Controlled Cooling System for a Diesel-Powered Truck

1984-11-01
841712
The hardware and software for a prototype computer controlled cooling system for a diesel powered truck has been designed and tested. The basic requirements for this system have been defined and the control functions, previously investigated in a study using the computer simulation model, were incorporated into the software. Engine dynamometer tests on the MACK-676 engine, comparing the conventional cooling system and the computer controlled system, showed the following advantages of the computer controlled system: 1. The temperature level to which the engine warms up to at low ambient temperature, was increased. 2. The faster shutter response reduced the temperature peaks and decreased total fan activity time. 3. The faster fan response reduces fan engagement time which should improve truck fuel economy.
Technical Paper

Idle Speed Control of GDI-SI Engines via ECU-1D Engine Co-Simulation

2010-10-25
2010-01-2220
Idle Speed Control plays a crucial role to reduce fuel consumption that turns in both a direct economic benefit for customers and CO\d reduction particularly important to tackle the progressive global environmental warming. Typically, control strategies available in the automotive literature solve the idle speed control problem acting both on the throttle position and the spark advance, while the Air-Fuel Ratio (AFR), that strongly affects the indicated engine torque, is kept at the stoichiometric value for the sake of emission reduction. Gasoline Direct Injection (GDI) engines, working lean and equipped with proper mechanisms to reduce NOx emissions, overcome this limitation allowing the AFR to be used for the idle speed regulation.
Technical Paper

Statistical Investigation of In Use Emissions and Fuel Consumption Measured by PEM on Different Gasoline Cars

2013-04-08
2013-01-1511
In this paper some results relative to tests performed on road with a Fiat Panda Bipower, (CNG and gasoline powered), and a New Panda Twin Air with auto Start & Stop system, are presented. Gaseous emissions are measured with Portable Emission Measurement Systems (PEMS) on two different urban routes, in terms of traffic and slope characteristics during in use experiments. PEMS testing offers an easy and efficient way to evaluate the vehicle emissions over a huge variety of conditions and provides us a direct way to study the in-use emissions of combustion engines, when you want to verify the effect of the traffic and of a particular device on fuel economy and emissions reduction. Moreover now PEMS performances are very comparable to those obtained by standard laboratory instrumentation systems.
Technical Paper

Optimization of Control Parameters for a Heavy-Duty CNG Engine via Co-Simulation Analysis

2011-04-12
2011-01-0704
Internal combustion engines for vehicle propulsion are more and more sophisticated due to increasingly restrictive environmental regulations. In case of heavy-duty engines, Compressed Natural Gas (CNG) fueling coupled with Three-Way Catalyst (TWC) and Exhaust Gas Recirculation (EGR) can help in meeting the imposed emission limits and preventing from thermal stress of engine components. To cope with the new issues associated with the more complex hardware and to improve powertrain performance and reliability and after-treatment efficiency, the engine control strategies must be reformulated. The paper focuses on the steady-state optimization of control parameters for a heavy-duty engine fueled by CNG and equipped with turbocharger and EGR. The optimization analysis is carried out to design EGR, spark timing and wastegate control, aimed at increasing fuel economy while reducing in-cylinder temperature to prevent from thermal stress of engine components.
Technical Paper

Optimization of an Asynchronous Fuel Injection System in Diesel Engines by Means of a Micro-Genetic Algorithm and an Adaptive Gradient Method

2008-04-14
2008-01-0925
Optimal fuel injection strategies are obtained with a micro-genetic algorithm and an adaptive gradient method for a nonroad, medium-speed DI diesel engine equipped with a multi-orifice, asynchronous fuel injection system. The gradient optimization utilizes a fast-converging backtracking algorithm and an adaptive cost function which is based on the penalty method, where the penalty coefficient is increased after every line search. The micro-genetic algorithm uses parameter combinations of the best two individuals in each generation until a local convergence is achieved, and then generates a random population to continue the global search. The optimizations have been performed for a two pulse fuel injection strategy where the optimization parameters are the injection timings and the nozzle orifice diameters.
Technical Paper

Analysis of Diesel Injector Nozzle Flow Number Impact on Emissions and Performance of a Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0891
The present paper describes the results of a research project aimed at studying the impact of nozzle flow number on a Euro5 automotive diesel engine, featuring Closed-Loop Combustion Control. In order to optimize the trade-offs between fuel economy, combustion noise, emissions and power density for the next generation diesel engines, general trend among OEMs is lowering nozzle flow number and, as a consequence, nozzle hole size. In this context, three nozzle configurations have been characterized on a 2.0L Euro5 Common Rail Diesel engine, coupling experimental activities performed on multi-cylinder and optical single cylinder engines to analysis on spray bomb and injector test rigs. More in detail, this paper deeply describes the investigation carried out on the multi-cylinder engine, specifically devoted to the combustion evolution and engine performance analysis, varying the injector flow number.
Technical Paper

Wall Impingement Process of a Multi-Hole GDI Spray: Experimental and Numerical Investigation

2012-04-16
2012-01-1266
The Direct Injection (DI) of gasoline in Spark Ignition (SI) engines is very attractive for fuel economy and performance improvements in spark ignition engines. Gasoline direct injection (GDI) offers the possibility of multi-mode operation, homogeneous and stratified charge, with benefits respect to conventional SI engines as higher compression ratio, zero pumping losses, control of the ignition process at very lean air-fuel mixture and good cold starting. The impingement of liquid fuel on the combustion chamber wall is generally one of the major drawbacks of GDI engines because its increasing of HC emissions and effects on the combustion process; in the wall guided engines an increasing attention is focusing on the fuel film deposits evolution and their role in the soot formation. Hence, the necessity of a detailed understanding of the spray-wall impingement process and its effects on the fuel distribution. The experimental results provide a fundamental data base for CFD predictions.
Technical Paper

Low Cetane Number Renewable Oxy-fuels for Premixed Combustion Concept Application: Experimental Investigation on a Light Duty Diesel Engine

2012-04-16
2012-01-1310
This paper illustrates the results of an experimental study on the impact of a low cetane number (CN) oxygenated fuel on the combustion process and emissions of a light-duty (LD) single-cylinder research engine. In an earlier study, it was concluded that cyclic oxygenates consistently outperformed their straight and branched counterparts at equal oxygen content and with respect to lowering soot emissions. A clear correlation was reported linking soot and CN, with lower CN fuels leading to more favorable soot levels. It was concluded that a lower CN fuel, when realized by adding low reactive cyclic oxygenates to commercial diesel fuel, manifests in longer ignition delays and thus more premixing. Ultimately, a higher degree of premixing, in turn, was thought to suppress soot formation rates.
Technical Paper

Experimental and Numerical Investigation of the Idle Operating Engine Condition for a GDI Engine

2012-04-16
2012-01-1144
The increased limitations to both NOx and soot emissions have pushed engine researchers to rediscover gasoline engines. Among the many technologies and strategies, gasoline direct injection plays a key-role for improving fuel economy and engine performance. The paper aims to investigate an extremely complex task such as the idle operating engine condition when the engine runs at very low engine speeds and low engine loads and during the warm-up. Due to the low injection pressure and to the null contribution of the turbocharger, the engine condition is far from the standard points of investigation. Taking into account the warm-up engine condition, the analyses are performed with a temperature of the coolant of 50°C. The paper reports part of a combined numerical and experimental synergic activity aiming at the understanding of the physics of spray/wall interaction within the combustion chamber and particular care is used for air/fuel mixing and the combustion process analyses.
Technical Paper

Multi-Dimensional Modeling of Combustion in Compression Ignition Engines Operating with Variable Charge Premixing Levels

2011-09-11
2011-24-0027
Premixed combustion modes in compression ignition engines are studied as a promising solution to meet fuel economy and increasingly stringent emissions regulations. Nevertheless, PCCI combustion systems are not yet consolidated enough for practical applications. The high complexity of such combustion systems in terms of both air-fuel charge preparation and combustion process control requires the employment of robust and reliable numerical tools to provide adequate comprehension of the phenomena. Object of this work is the development and validation of suitable models to evaluate the effects of charge premixing levels in diesel combustion. This activity was performed using the Lib-ICE code, which is a set of applications and libraries for IC engine simulations developed using the OpenFOAM® technology.
Technical Paper

Effects of Premixed Low Temperature Combustion of Fuel Blends with High Resistance to Auto-ignition on Performances and Emissions in a High Speed Diesel Engine

2011-09-11
2011-24-0049
This paper reports results of an experimental investigation to demonstrate the potential to employ blends of fuels having low cetane numbers that can provide high resistance to auto-ignition to reduce simultaneously NOx and smoke. Because of the higher resistance to auto-ignition, blends of diesel and gasoline at different volume fraction may provide more time for the mixture preparation by increasing the ignition delay. The result produces the potential to operate under partially premixed low temperature combustion with lower levels of EGR without excessive penalties on fuel efficiency. In addition to the diesel fuel, the tested blends were mixed by the baseline diesel with 20% and 40% of commercial EURO IV 98 octane gasoline by volume, denoted G20 and G40. The experimental activity has been performed on a turbocharged, water cooled, DI diesel engine, equipped with a common rail injection system.
Technical Paper

UV-Visible Imaging of PCCI Engine Running with Ethanol/Diesel Fuel

2012-04-16
2012-01-1238
Premixed charge compression ignition (PCCI) has been shown to be a promising strategy to simultaneously reduce emissions while realizing improved fuel economy. PCCI combustion uses high levels of pre-combustion mixing to lower both NOx and soot emissions by ensuring low equivalence ratio and low flame temperatures. The high level of pre-combustion mixing results in a primarily kinetics controlled combustion process. In this work, optical diagnostics have been applied in a transparent DI diesel engine equipped with the head of Euro5 commercial engine and the last generation CR injection system. In order to realize the PCCI combustion the injection of neat ethanol has been performed in the intake manifold. The engine run in continuous way at 1500 rpm engine speed and commercial diesel fuel has been injected into the cylinder. The PCCI combustion has been analyzed by means of UV- Visible digital imaging and the mixing process, the autoignition of the charge have been investigated.
Technical Paper

Analysis of the Impact of the Dual-Fuel Ethanol-Diesel System on the Size, Morphology, and Chemical Characteristics of the Soot Particles Emitted from a LD Diesel Engine

2014-04-01
2014-01-1613
Nowadays, alcohol fuels are of increasing interest as alternative transportation biofuels even in compression ignition engines because they are oxygenated and producible in a sustainable way. In this paper, the experimental research activity was conducted on a single cylinder research engine provided with a modern architecture and properly modified in a dual-fuel (DF) configuration. Looking at ethanol the as one of the future environmental friendly biofuels experimental campaign was aimed to evaluate in detail the effect of the use of the ethanol as port injected fuel in diesel engine on the size, morphology, reactivity and chemical features of the exhaust emitted soot particles. The engine tests were chosen properly in order to represent actual working conditions of an automotive light-duty diesel engine. A proper engine Dual-Fuel calibration was set-up respecting prefixed limits on in-cylinder peak firing pressure, cylinder pressure rise, fuel efficiency and gaseous emissions.
Technical Paper

Plasma Assisted Ignition Effects on a DISI Engine Fueled with Gasoline and Butanol under Lean Conditions and with EGR

2016-04-05
2016-01-0710
Considering the generalized diversification of the energy mix, the use of alcohols as gasoline replacement is proposed as a viable option. Also, alternative control strategies for spark ignition engines (SI) such as lean operation and exhaust gas recirculation (EGR) are used on an ever wider scale for improving fuel economy and reducing the environmental impact of automotive engines. In order to increase the stability of these operating points, alternative ignition systems are currently investigated. Within this context, the present work deals about the use of plasma assisted ignition (PAI) in a direct injection (DI) SI engine under lean conditions and cooled EGR, with gasoline and n-butanol fueling. The PAI system was tested in an optically accessible single-cylinder DISI engine equipped with the head of a commercial turbocharged power unit with similar geometrical specifications (bore, stroke, compression ratio).
Technical Paper

Experimental Analysis of a Gasoline PFI-Methane DI Dual Fuel and an Air Assisted Combustion of a Transparent Small Displacement SI Engine

2015-09-06
2015-24-2459
The use of direct injection (DI) engines allows a more precise control of the air-fuel ratio, an improvement of fuel economy, and a reduction of exhaust emissions thanks to the ultra-lean combustion due to the charge stratification. These effects can be partially obtained also with an optimized Air Direct Injection that permits to increase the turbulence at low speed and load increasing the combustion stability especially in lean condition. In this paper, a gasoline PFI (named G-PFI), gasoline PFI-methane DI dual fuel (named G-MDF) lean combustion were analyzed. The G-MDF configuration was also compared with a gasoline PFI - air DI (named G-A) configuration in order to distinguish the chemical effect of methane from the direct injection physical effect. The tests were carried out in a small displacement PFI/DI SI engine. The experimental investigation was carried out in a transparent small single-cylinder, spark ignition four-stroke engine.
Technical Paper

An Experimental and Computational Investigation of Water Condensation inside the Tubes of an Automotive Compact Charge Air Cooler

2016-04-05
2016-01-0224
To address the need of increasing fuel economy requirements, automotive Original Equipment Manufacturers (OEMs) are increasing the number of turbocharged engines in their powertrain line-ups. The turbine-driven technology uses a forced induction device, which increases engine performance by increasing the density of the air charge being drawn into the cylinder. Denser air allows more fuel to be introduced into the combustion chamber, thus increasing engine performance. During the inlet air compression process, the air is heated to temperatures that can result in pre-ignition resulting and reduced engine functionality. The introduction of the charge air cooler (CAC) is therefore, necessary to extract heat created during the compression process. The present research describes the physics and develops the optimized simulation method that defines the process and gives insight into the development of CACs.
X